Skip to main content
Log in

Immobilization of RuS2 Nanoparticles Prepared in Reverse Micellar System onto Thiol-Modified Polystyrene Particles and their Photocatalytic Properties

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

RuS2 nanoparticles, smaller than 3 nm in diameter, were prepared by H2S gas injection into the AOT/isooctane reverse micellar solution containing RuCl3 aqueous solution. The nanoparticle size was found to be independent of the Wo (water content) value of the reverse micellar system, as shown by TEM observation. The recovery and immobilization of the RuS2 nanoparticles from reverse micelles onto thiol-modified polystyrene particles (PSt-SH) were successfully carried out, by the addition of PSt-SH into the reverse micellar solution under conditions of mild stirring. The resulting composites, PSt-RuS2, showed photocatalytic activity for H2 generation form aqueous solution containing 2-propanol and Na2SO3 as sacrificial electron donors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnickel P., A. Wokaun, W. Sager & H.-F. Eicke, 1992. Size tailoring of silver colloids by reduction in W/O microemulsions. J. Colloid Interface Sci. 148, 80–90.

    Google Scholar 

  • Fletcher P.D.I., A.M. Howe & B.H. Robinson, 1987. The kinetics of solubilisate exchange between water droplets of a water-in-oil microemulsion. J. Chem. Soc., Faraday Trans. 1, 83, 985–1006.

    Google Scholar 

  • Hara K., K. Sayama & H. Arakawa, 1998. Photocatalytic activity of RuS2/SiO2 for water decomposition. Chem. Lett. 387–388.

  • Hara K., K. Sayama & H. Arakawa, 1999. Photocatalytic hydrogen and oxygen formation over SiO2-supported RuS2 in the presence of sacrificial donor and acceptor. Appl. Catal. A: General 189, 127–137.

    Google Scholar 

  • Hirai T. & I. Komasawa, 2000. Preparation of nano-CdS-polyurethane composites via in situ polymerizatioin in reverse micellar systems. J. Mater. Chem. 10, 2234–2235.

    Google Scholar 

  • Hirai T., H. Sato & I. Komasawa, 1993. Mechanism of formation of titanium dioxide ultrafine particles in reverse micelles by hydrolysis of titanium tetrabutoxide. Ind. Eng. Chem. Res. 32, 3014–3019.

    Google Scholar 

  • Hirai T., S. Shiojiri & I. Komasawa, 1994. Preparation of metal sulfide composite ultrafine particles in reverse micellar systems and their photocatalytic property. J. Chem. Eng. Jpn. 27, 590–597.

    Google Scholar 

  • Hirai T., M. Miyamoto, T. Watanabe, S. Shiojiri & I. Komasawa, 1998. Effects of thiols on photocatalytic properties of nano-CdS-polythiourethane composite particles. J. Chem. Eng. Jpn. 31, 1003–1006.

    Google Scholar 

  • Hirai T., M. Miyamoto & I. Komasawa, 1999a. Composite nano-CdS-polyurethane transparent films. J. Mater. Chem. 9, 1217–1219.

    Google Scholar 

  • Hirai T., T. Watanabe & I. Komasawa, 1999b. Preparation of semiconductor nanoparticle-polyurea composites using reverse micellar systems via an in situ diisocyanate polymerization. J. Phys. Chem. B 103, 10120–10126.

    Google Scholar 

  • Hirai T., H. Okubo & I. Komasawa, 1999c. Size-selective incorporation of CdS nanoparticles into mesoporous silica. J. Phys. Chem. B 103, 4228–4230.

    Google Scholar 

  • Hirai T., T. Watanabe & I. Komasawa, 2000a. Preparation of semiconductor nanoparticle-polymer composites by direct reverse micelle polymerization using polymerizable surfactants. J. Phys. Chem. B 104, 8962–8966.

    Google Scholar 

  • Hirai T., T. Saito & I. Komasawa, 2000b. Recovery and immobilization of metal sulfide nanoparticles from reverse micellar system onto thiol-modified polystyrene particles. J. Phys. Chem. B 104, 11639–11643.

    Google Scholar 

  • Hirai T., H. Okubo & I. Komasawa, 2000c. Incorporation of CdS nanoparticles formed in reverse micelles into silica matrices via a sol-gel process: Preparation of nano-CdS-containing silica colloids and silica glass. J. Mater. Chem. 10, 2592–2596.

    Google Scholar 

  • Hirai T., T. Saito & I. Komasawa, 2001a. Stabilization of CdS nanoparticles immobilized on thiol-modified polystyrene particles by encapsulation with polythiourethane. J. Phys. Chem. B 105, 9711–9714.

    Google Scholar 

  • Hirai T., H. Okubo & I. Komasawa, 2001b. Incorporation of CdS nanoparticles formed in reverse micelles into mesoporous silica. J. Colloid Interf. Sci. 235, 358–364.

    Google Scholar 

  • Hirai T., M. Nanba & I. Komasawa, 2002. Dithiol-mediated immobilization of CdS nanoparticles from reverse micellar system onto Zn-doped silica particles and their high photocatalytic activity. J. Colloid Interf. Sci. 252, 88–92.

    Google Scholar 

  • Kurihara K., J. Kizling, P. Stenius & J.H. Fendler, 1983. Laser and pulse radiolytically induced colloidal gold formation in water and in water-in-oil microemulsions. J. Am. Chem. Soc. 105, 2574–2579.

    Google Scholar 

  • Lang J., A. Jada & A. Malliaris, 1988. Structure and dynamics of water-in-oil droplets stabilized by sodium bis(2-ethylhexy) sulfosuccinate. J. Phys. Chem. 92, 1946–1953.

    Google Scholar 

  • Lezzi A., S. Cobianco & A. Roggero, 1994. Synthesis of thiol chelating resins and their adsorption properties toward heavymetal ions. J. Polym. Sci. 32, 1877–1883.

    Google Scholar 

  • Lianos P. & J.K. Thomas, 1986. Cadmium sulfide of small dimensions produced in inverted micelles. Chem. Phys. Lett. 125, 299–302.

    Google Scholar 

  • Lianos, P. & J.K. Thomas, 1987. Small CdS particles in inverted micelles. J. Colloid Interf. Sci. 117, 505–512.

    Google Scholar 

  • Motte L., C. Petit, L. Boulanger, P. Lixon & M.P. Pileni, 1992. Synthesis of cadmium sulfide in situ in cadmium bis(ethyl-2-hexyl) sulfosuccinate reverse micelle: Polydispersity and photochemical reaction. Langmuir 8, 1049–1053.

    Google Scholar 

  • Oldfield C., 1991. Exchange concept in water-in-oil microemulsions: Consequences for ‘slow’ chemical reactions. J. Chem. Soc., Faraday Trans. 87, 2607–2612.

    Google Scholar 

  • Petit C. & M.P. Pileni, 1988. Synthesis of cadmium sulfide in situ in reverse micelles and in hydrocarbon gels. J. Phys. Chem. 92, 2282–2286.

    Google Scholar 

  • Petit C., P. Lixon & M.P. Pileni, 1990. Synthesis of cadmium sulfide in situ in reverse micelles. 2. Influence of the interface on the growth of the particles. J. Phys. Chem. 94, 1598–1603.

    Google Scholar 

  • Pileni M.P., L. Motte & C. Petit, 1992. Synthesis of cadmium sulfide in situ in reverse micelles: Influence of the preparation modes on size, polydispersity, and photochemical reactions. Chem. Mater. 4, 338–345.

    Google Scholar 

  • Shiojiri S., T. Hirai & I. Komasawa, 1997. Preparation of cadmium sulfide ultrafine particles surface-modified with thiols in reverse micellar systems and redispersion in non-micellar solvents. J. Chem. Eng. Jpn. 30, 86–93.

    Google Scholar 

  • Shiojiri S., M. Miyamoto, T. Hirai & I. Komasawa, 1998a. Thiol-mediated immobilization of photocatalytic metal sulfide ultrafine particles formed in reverse micellar systems in polythiourethane. J. Chem. Eng. Jpn. 31, 425–433.

    Google Scholar 

  • Shiojiri S., T. Hirai & I. Komasawa, 1998b. Immobilization of semiconductor nanoparticles formed in reverse micelles into polyurea via in situ polymerization of diisocyanates. Chem. Commun. 1439–1440.

  • Towey T.F., A. Khan-Lodhi & B.H. Robinson, 1990. Kinetics and mechanism of formation of quantum-sized cadmium sulphide particles in water-aerosol-OT-oil microemulsions. J. Chem. Soc., Faraday Trans. 86, 3757–3762.

    Google Scholar 

  • Verbeeck A. & F.C. De Schryver, 1987. Fluorescence quenching in inverse micellar systems: Possibilities and limitations. Langmuir 3, 494–500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, T., Nomura, Y. & Komasawa, I. Immobilization of RuS2 Nanoparticles Prepared in Reverse Micellar System onto Thiol-Modified Polystyrene Particles and their Photocatalytic Properties. Journal of Nanoparticle Research 5, 61–67 (2003). https://doi.org/10.1023/A:1024422226598

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024422226598

Navigation