Skip to main content
Log in

Chemical Hypoxia-Induced Cell Death in Human Glioma Cells: Role of Reactive Oxygen Species, ATP Depletion, Mitochondrial Damage and Ca2+

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study was undertaken to evaluate whether chemical hypoxia-induced cell injury is a result of reactive oxygen species (ROS) generation, ATP depletion, mitochondrial permeability transition, and an increase in intracellular Ca2+, in A172 cells, a human glioma cell line. Chemical hypoxia was induced by incubating cells with antimycin A, an inhibitor of mitochondrial electron transport, in a glucose-free medium. Exposure of cells to chemical hypoxia resulted in cell death, ROS generation, ATP depletion, and mitochondrial permeability transition. The H2O2 scavenger pyruvate prevented cell death, ROS generation, and mitochondrial permeability transition induced by chemical hypoxia. In contrast, changes mediated by chemical hypoxia were not affected by hydroxyl radical scavengers. Antioxidants did not affect cell death and ATP depletion induced by chemical hypoxia, although they prevented ROS production and mitochondrial permeability transition induced by chemical hypoxia. Chemical hypoxia did not increase lipid peroxidation even when antimycin A was increased to 50 μM, whereas the oxidant t-butylhydroperoxide caused a significant increase in lipid peroxidation, at a concentration that is less effective than chemical hypoxia in inducing cell death. Fructose protected against cell death and mitochondrial permeability transition induced by chemical hypoxia. However, ROS generation and ATP depletion were not prevented by fructose. Chemical hypoxia caused the early increase in intracellular Ca2+. The cell death and ROS generation induced by chemical hypoxia were altered by modulation of intracellular Ca2+ concentration with ruthenium red, TMB-8, and BAPTA/AM. However, mitochondrial permeability transition was not affected by these compounds. These results indicate that chemical hypoxia causes cell death, which may be, in part, mediated by H2O2 generation via a lipid peroxidation-independent mechanism and elevated intracellular Ca2+. In addition, these data suggest that chemical hypoxia-induced cell death is not associated directly with ATP depletion and mitochondrial permeability transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., and Herman, B. 1997. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol. Cell. Biochem. 174:159-165.

    Google Scholar 

  2. Pocock, J. M. and Nicholls, D. G. 1998. Exocytotic and nonexocytotic modes of glutamate release from cultured cerebellar granule cells during chemical ischaemia. J. Neurochem. 70:806-813.

    Google Scholar 

  3. Gunasekar, P. G., Borowitz, J. L., and Isom, G. E. 1998. Cyanide-induced generation of oxidative species: Involvement of nitric oxide synthase and cyclooxygenase-2. J. Pharmacol. Exp. Ther. 285:236-241.

    Google Scholar 

  4. Aizenman, E., Sinor, J. D., Brimecombe, J. C., and Herin, G. A. 2000. Alterations of N-methyl-D-aspartate receptor properties after chemical ischemia. J. Pharmacol. Exp. Ther. 295:572-577.

    Google Scholar 

  5. Pastorino, J. G., Snyder, J. W., Serroni, A., Hoek, J. B., and Farber, J. L. 1993. Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J. Biol. Chem. 268:13791-13798.

    Google Scholar 

  6. Kroemer, G., Dallaporta, B., and Resche-Rigon, M. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60:619-642.

    Google Scholar 

  7. Tatton, W. G. and Olanow, C. W. 1999. Apoptosis in neurodegenerative diseases: The role of mitochondria. Biochim. Biophys. Acta 1410:195-213.

    Google Scholar 

  8. Lipton, P. 1999. Ischemic cell death in brain neurons. Physiol. Rev. 79:1431-1568.

    Google Scholar 

  9. Goldberg, W. P. and Choi, D. W. 1993. Combined oxygen and glucose deprivation in cortical cell cuture: Calcium-dependent and calcium-independent mechanisms of neuronal injury. J. Neurosci. 13:3510-3524.

    Google Scholar 

  10. Kristain, T. and Siesjo, B. K. 1996. Calcium in ischemic cell death. Life Sci. 59:357-367.

    Google Scholar 

  11. Donohoe, P. H., Fahlman, C. S., Bicker, P. E., Vexler, Z. S., and Gregory, G. A. 2001. Neuroprotection and intracellular Ca2+ modulation with fructose-1,6-bisphosphate during in vitro hypoxia-ischemia involves phospholipase C-dependent signaling. Brain Res. 917:158-166.

    Google Scholar 

  12. Pastorino, J. G., Snyder, J. W., Hoek, J. B., and Farber, J. L. 1995. Ca2+ depletion prevents anoxic death of hepatocytes by inhibiting mitochondrial permeability transition. Am. J. Physiol. 268:C676-C685.

    Google Scholar 

  13. Shi, L. C., Wang, H. Y., and Friedman, E. 1998. Onvolvement of platelet-activating factor in cell death induced under ischemia/postischemia-like conditions in an immortalized hippocampal cell line. J. Neurochem. 70:1035-1044.

    Google Scholar 

  14. Jurkowitz-Alexander, M. S., Altschuld, R. A., Hohl, C. M., Johnson, J. D., McDonald, J. S., Simmons, T. D., and Horrocks, L. A. 1992. Cell swelling, blebbing, and death are dependent on ATP depletion and independent of calcium during chemical hypoxia in a glial cell line (ROC-1). J. Neurochem. 59:344-352.

    Google Scholar 

  15. Pastorino, J. G., Simbula, G., Gilfor, E., Hoek, J. B., and Farber, J. L. 1994. Protoporphyrin IX, an endogenous ligand of the peripheral benzodiazepine receptor, potentiates induction of the mitochondrial permeability transition and the killing of cultured hepatocytes by rotenone. J. Biol. Chem. 269:31041-31046.

    Google Scholar 

  16. Kim, Y. K., Lee, S. K., Ha, M. S., Woo, J. S., and Jung, J. S. 2002. Differential role of reactive oxygen species in chemical hypoxia-induced cell injury in opossum kidney cells and rabbit renal cortical slices. Exp. Nephrol. 10:275-284.

    Google Scholar 

  17. Desagher, S., Glowinski, J., and Premont, J. 1996. Astrocytes protect neurons from hydrogen peroxide toxicity. J. Neurosci. 16:2553-2562.

    Google Scholar 

  18. Makar, T. K., Nedergaard, M., Preuss, A., Gelbard, A. S., Perumal, A. S., and Cooper, A. J. 1994. Vitamin E, ascorbate, glutathione, glutathione disulfide, and enzymes of glutathione metabolism in cultures of chick astrocytes and neurons: Evidence that astrocytes play an important role in antioxidative processes in the brain. J. Neurochem. 62:45-53.

    Google Scholar 

  19. Swanson, R. A. 1992. Astrocyte glutamate uptake during chemical hypoxia in vitro. Neurosci. Lett. 147:143-146.

    Google Scholar 

  20. Rose, C. R., Waxman, S. G., and Ransom, B. R. 1998. Effects of glucose deprivation, chemical hypoxia, and simulated ischemia on Na+ homeostasis in rat spinal cord astrocytes. J. Neurosci. 18:3554-3562.

    Google Scholar 

  21. Almeida, A., Almeida, J., Bolanos, J. P., and Moncada S. 2001. Different responses of astrocytes and neurons to nitric oxide: The role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. USA 98:15294-15299.

    Google Scholar 

  22. Denizot, F. and Lang, R. 1986. Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89:271-277.

    Google Scholar 

  23. Bass, D. A., Parce, J. W., Dechatelet, L. R., Szejda, P., Seeds, M. C., and Thomas, M. 1983. Flow cytometric studies of oxidative product formation by neutrophils: A graded response to membrane stimulation. J. Immunol. 130:1910-1917.

    Google Scholar 

  24. Lebel, C. P., Ischiropoulos, H., and Bondy, S. C. 1992. Evaluation of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5:227-231.

    Google Scholar 

  25. Rosenkranz, A. R., Schmaldienst, S., Stuhlmeier, K. M., Chen, W., Knapp, W., and Zlabinger, G. J. 1992. A microplate assay for the detection of oxidative products using 2′, 7′-dichlorofluorescin-diacetate. J. Immunol. Methods 156:39-45.

    Google Scholar 

  26. Uchiyama, M. and Mihara, M. 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86:271-278.

    Google Scholar 

  27. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

    Google Scholar 

  28. Lizard, G., Fournel, S., Genestier, L., Dhedin, N., Chaput, C., Flacher, M., Mutin, M., Panaye, G., and Revillard, J. P. 1995. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry 21:275-283.

    Google Scholar 

  29. Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W., and Farber, J. L. 1998. The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273:7770-7775.

    Google Scholar 

  30. Hesketh, T. R., Smith, G. A., Moore, J. P., Taylor, M. V., and Metcalfe, J. C. 1983. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J. Biol. Chem. 258:4876-4882.

    Google Scholar 

  31. Nieminen, A. L., Saylor, A. K., Tesfai, S. A., Herman, B., and Lemasters, J. J. 1995. Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem. J. 307:99-106.

    Google Scholar 

  32. Krippner, A., Matsuno-Yagi, A., Gottlieb, R. A., and Babior, B. M. 1996. Loss of function of cytochrome c in Jurkat cells undergoing fas-mediated apoptosis. J. Biol. Chem. 271:21629-21636.

    Google Scholar 

  33. Frenkel, K. and Gleichauf, C. 1991. Hydrogen peroxide formation by cells treated with a tumor promoter. Free Radic. Res. Commun. 12-13:783-794.

    Google Scholar 

  34. Koppenol, W. H. 1993. Generation and thermodynamic properties of oxyradicals. Pages 1-10, inC. Vigo-Pelfery (eds.), Membrane lipid oxidation. CRC Press, Boca Raton.

    Google Scholar 

  35. Halliwell, B., Gutteridge, J. M. C., and Cross, C. E. 1992. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 119:598-620.

    Google Scholar 

  36. Kappus, H. and Reinhold, C. 1994. Heavy metal-induced cytotoxicity to cultured human epidermal keratinocytes and effects of antioxidants. Toxicol. Lett. 71:105-109.

    Google Scholar 

  37. Anundi, I., King, J., Owen, D. A., Schneider, H., Lemasters, J. J., and Thurman, R. G. 1987. Fructose prevents hypoxic cell death in liver. Am. J. Physiol. 253:G390-G396.

    Google Scholar 

  38. Nieminen, A. L., Dawson, T. L., Gores, G. J., Kawanishi, T., Herman, B., and Lemasters, J. J. 1990. Protection by acidotic pH and fructose against lethal injury to rat hepatocytes from mitochondrial inhibitors, ionophores and oxidant chemicals. Biochem. Biophys. Res. Commun. 167:600-606.

    Google Scholar 

  39. Zhang, J. G., Tirmenstein, M. A., Nicholls-Grzemski, F. A., and Fariss, M. W. 2001. Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and-independent cell death: Protective role of antioxidants. Arch. Biochem. Biophys. 393:87-96.

    Google Scholar 

  40. Ueda, N., Mayeux, P. R., Walker, P. D., and Shah, S. V. 1991. Receptor-mediated increase in cytosolic calcium in LLC-PK1 cells by platelet activating factor and thromboxane A2. KidneyInt. 40:1075-1081.

    Google Scholar 

  41. Carter, W. O., Narayanan, P. K., and Robinson J. P. 1994. Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 55:253-258.

    Google Scholar 

  42. Gunasekar, P. G., Sun, P. W., Kanthasamy, A. G., Borowitz, J. L., and Isom, G. E. 1996. Cyanide-induced neurotoxicity involves nitric oxide and reactive oxygen species generation after N-methyl-D-aspartate receptor activation. J. Pharmacol. Exp. Ther. 277:150-155.

    Google Scholar 

  43. Farber, J. L., Kyle, M. E., and Coleman, J. B. 1990. Biology of disease: Mechanisms of cell injury by activated oxygen species. Lab. Invest. 62:670-679.

    Google Scholar 

  44. Lee, Y. W., Ha, M. S., and Kim, Y. K. 2001. H2O2-induced cell death in human glioma cells: Role of lipid peroxidation and PARP activation. Neurochem. Res. 26:337-343.

    Google Scholar 

  45. Muller, U. and Krieglstein, J. 1995. Inhibitors of lipid peroxidation protect cultured neurons against cyanide-induced injury. Brain Res. 678:265-268.

    Google Scholar 

  46. Myers, K. M., Fiskum, G., Liu, Y., Simmens, S. J., Bredesen, D. E., and Murphy, A. N. 1995. Bcl-2 protects neural cells from cyanide/aglycemia-induced lipid oxidation, mitochondrial injury, and loss of viability. J. Neurochem. 65:2432-2440.

    Google Scholar 

  47. Pauwels, P. J., Opperdoes, F. R., and Trouet, A. 1985. Effects of antimycin, glucose deprivation, and serum on cultures of neurons, astrocytes, and neuroblastoma cells. J. Neurochem. 44:143-148.

    Google Scholar 

  48. Thies, R. L. and Autor, A. P. 1991. Reactive oxygen injury to cultured pulmonary artery endothelial cells: Mediation by poly(ADP-ribose)polymerase activation causing NAD depletion and altered energy balance. Arch. Biochem. Biophys. 286:353-363.

    Google Scholar 

  49. Andreoli, S. P. and Mallett, C. P. 1997. Disassociation of oxidant-induced ATP depletion and DNA damage from early cytotoxicity in LLC-PK1 cells. Am. J. Physiol. 272:F729-F735.

    Google Scholar 

  50. Wang, J., Green, P. S., and Simpkins, J. W. 2001. Estradiol protects against ATP depletion, mitochondrial membrane potential decline and the generation of reactive oxygen species induced by 3-nitroproprionic acid in SK-N-SH human neuroblastoma cells. J. Neurochem. 77:804-811.

    Google Scholar 

  51. Nicotera, P., Thor, H., and Orrenius, S. 1989. Cytosolic-free Ca2+ and cell killing in hepatoma 1c1c7 cells exposed to chemical anoxia. FASEB J. 3:59-64.

    Google Scholar 

  52. Lemasters, J. J., DiGuiseppi, J., Nieminen, A. L., and Herman, B. 1987. Blebbing, free Ca2+ and mitochondrial membrane potential preceeding cell death in hepatocytes. Nature 325:79-81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Keun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, J.I., Lee, Y.W. & Kim, Y.K. Chemical Hypoxia-Induced Cell Death in Human Glioma Cells: Role of Reactive Oxygen Species, ATP Depletion, Mitochondrial Damage and Ca2+ . Neurochem Res 28, 1201–1211 (2003). https://doi.org/10.1023/A:1024280429036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024280429036

Navigation