Skip to main content
Log in

Origin and Evolution of a New Gene Expressed in the Drosophila Sperm Axoneme

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Sdic is a new gene that evolved recently in the lineage of Drosophila melanogaster. It was formed from a duplication and fusion of the gene AnnX, which encodes annexin X, and Cdic, which encodes the intermediate polypeptide chain of the cytoplasmic dynein. The fusion joins AnnX exon 4 with Cdic intron 3, which brings together three putative promoter elements for testes- specific expression of Sdic: the distal conserved element (DCE) and testes-specific element (TSE) are derived from AnnX, and the proximal conserved element (PCE) from Cdic intron 3. Sdic transcription initiates within the PCE, and translation is initiated within the sequence derived from Cdic intron 3, continuing through a 10 base pair insertion that creates a new splice donor site that enables the new coding sequence derived from intron 3 to be joined with the coding sequence of Cdic exon 4. A novel protein is created lacking 100 residues at the amino end that contain sequence motifs essential for the function of cytoplasmic dynein intermediate chains. Instead, the amino end is a hydrophobic region of 16 residues that resembles the amino end of axonemal dynein intermediate chains from other organisms. The downstream portion of Sdic features large deletions eliminating Cdic exons v2 and v3, as well as multiple frameshift deletions or insertions. The new protein becomes incorporated into the tail of the mature sperm and may function as an axonemal dynein intermediate chain. The new Sdic gene is present in about 10 tandem repeats between the wildtype Cdic and AnnX genes located near the base of the X chromosome. The implications of these findings are discussed relative to the origin of new gene functions and the process of speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aniento, F., N. Emans, G. Griffiths & J. Gruenberg, 1993. Cytoplasmic dynein-dependent vesicular transport from early to late endosomes. J. Cell Biol. 123: 1373-1387.

    PubMed  Google Scholar 

  • Aravin, A.A., N.M. Naumova, A.V. Tulin, V.V. Vagin, Y.M. Rozovsky & V.A. Gvozdev, 2001. Double-stranded RNAmediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11: 1017-1027.

    PubMed  Google Scholar 

  • Atlan, A., H. Mercot, C. Landre & C. Montchampmoreau, 1997. The sex-ratio trait in Drosophila simulans: geographical distribution of distortion and resistance. Evolution 51: 1886-1895.

    Google Scholar 

  • Balakireva, M.D., Y.Y. Shevelyov, D.I. Nurminsky, K.J. Livak & V.A. Gvozdev, 1992. Structural organization and diversification of Y-linked sequences comprising Su(Ste) genes in Drosophila melanogaster. Nucl. Acids Res. 20: 3731-3736.

    PubMed  Google Scholar 

  • Barton, G.J., R.H. Newman, P.S. Freemont & M.J. Crumpton, 1991. Amino acid sequence analysis of the annexin super-gene family of proteins. Eur. J. Biochem. 198: 749-760.

    PubMed  Google Scholar 

  • Begun, D.J., 1997. Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. Genetics 145: 375-382.

    PubMed  Google Scholar 

  • Bozzetti, M.P., S. Massari, P. Finelli, F. Meggio, L.A. Pinna, B. Boldyreff, O.G. Issinger, G. Palumbo, C. Ciriaco, S. Bonaccorsi & S. Pimpinelli, 1995. The Ste locus, a component of the parasitic cry-ste system of Drosophila melanogaster, encodes a protein that forms crystals in primary spermatocytes and mimics properties of the beta subunit of casein kinase. Proc. Natl. Acad. Sci. USA 92: 6067-6071.

    PubMed  Google Scholar 

  • Civetta, A. & R.S. Singh, 1995. High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. J. Mol. Evol. 41: 1085-1095.

    PubMed  Google Scholar 

  • Corthesy-Theulaz, I., A. Pauloin & S.R. Rfeffer, 1992. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex. J. Cell. Biol. 118: 1333-1345.

    PubMed  Google Scholar 

  • Coulthart, M.B. & R.S. Singh, 1988. High level of divergence of male-reproductive-tract proteins between Drosophila melanogaster and its sibling species, D. simulans. Mol. Biol. Evol. 5: 182-191.

    PubMed  Google Scholar 

  • Dillman, J.F., L.P. Dabney & K.K. Pfister, 1996. Cytoplasmic dynein is associated with slow axonal transport. Proc. Natl. Acad. Sci. USA 93: 141-144.

    PubMed  Google Scholar 

  • Geisow, M.J., 1991. Annexins: forms without function but not without fun. Trends Biotechnol. 9: 180-181.

    Google Scholar 

  • Gilbert, W., 1978. Why genes in pieces? Nature 271: 501.

    PubMed  Google Scholar 

  • Jeffs, P.S., E.C. Holmes & M. Ashburner, 1994. The molecular evolution of the alcohol dehydrogenase and alcohol dehydrogenase-related genes in the Drosophila melanogaster species subgroup. Mol. Biol. Evol. 11: 287-304.

    PubMed  Google Scholar 

  • King, S.M., E. Barbarese, J.F. Dillman, R.S. Patel-King, J.H. Carson & K.K. Pfister, 1996. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J. Biol. Chem. 271: 19358-19366.

    PubMed  Google Scholar 

  • Laurie, C.C., 1997. The weaker sex is heterogamatic: 75 years of Haldane's rule. Genetics 147: 937-951.

    PubMed  Google Scholar 

  • Livak, K.J., 1990. Detailed structure of the Drosophila melanogaster Stellate genes and their transcripts. Genetics 124: 303-316.

    PubMed  Google Scholar 

  • Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11: 673-680.

    PubMed  Google Scholar 

  • Long, M. & C.H. Langley, 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91-95.

    PubMed  Google Scholar 

  • Long, M., C. Rosenberg & W. Gilbert, 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92.

  • Luque, T., G. Marfany & R. Gonzàlez-Duarte, 1997. Characterization and molecular analysis of Adh retrosequences in species of the Drosophila obscura group. Mol. Biol. Evol. 14: 1316-1325.

    PubMed  Google Scholar 

  • Ma, S., L. Trivinos-Lagos, R. Graf & R.L. Chisholm, 1999. Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J. Cell Biol. 147: 1261-1273.

    PubMed  Google Scholar 

  • Martinez-Cruzado, J.C., C. Swimmer, M.G. Fenerjian & F.C. Kafatos, 1988. Evolution of the autosomal chorion locus in Drosophila. I. General organization of the locus and sequence comparisons of genes s15 and s19 in evolutionary distant species. Genetics 199: 663-677.

    Google Scholar 

  • Mazumdar, M., A. Mikami, M.A. Gee & R.B. Vallee, 1996. In vitro motility from recombinant dynein heavy chain. Proc. Natl. Acad. Sci. USA 93: 6552-6556.

    PubMed  Google Scholar 

  • McClean, J.R., C.J. Merrill, P.A. Powers & B. Ganetzky, 1994. Functional identification of the segregation distorter locus of Drosophila melanogaster by germline transformation. Genetics 137: 201-209.

    PubMed  Google Scholar 

  • Mckee, B.D. & M.T. Satter, 1996. Structure of the Y chromosomal Su(Ste) locus in Drosophila melanogaster and evidence for localized recombination among repeats. Genetics 142: 149-161.

    PubMed  Google Scholar 

  • Michiels, F., A. Gasch, B. Kaltschmidt & R. Renkawitz-Pohl, 1989. A 14 bp promoter element directs the testis specificity of the Drosophila beta 2 tubulin gene. EMBO J. 8: 1559-1565.

    PubMed  Google Scholar 

  • Nurminsky, D.I., E.N. Moriyama, E.R. Lozovskaya & D.L. Hartl, 1995. Molecular phylogeny and genome evolution in the Drosophila virilis group: duplications of the alcohol dehydrogenase gene. Mol. Biol. Evol. 13: 132-149.

    Google Scholar 

  • Nurminsky, D.I., E.V. Benevolenskaya, M.V. Nurminskaya, Y.Y. Shevelyov, D.L. Hartl & V.A. Gvozdev, 1998a. Cytoplasmic dynein intermediate chain isoforms with different targeting properties created by tissue-specific alternative splicing. Mol. Cell. Biol. 18: 6816-6825.

    PubMed  Google Scholar 

  • Nurminsky, D.I., M.V. Nurminskaya, D. De Aguiar & D.L. Hartl, 1998b. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572-575.

    PubMed  Google Scholar 

  • Nurminsky, D., D. De Aguiar, C.D. Bustamante & D.L. Hartl, 2001. Chromosomal effects of rapid gene evolution in Drosophila melanogaster. Science 291: 128-130.

    PubMed  Google Scholar 

  • Palumbo, G., S. Bonaccorsi, L.G. Robbins & S. Pimpinelli, 1994. Genetic analysis of stellate elements of Drosophila melanogaster. Genetics 138: 1181-1197.

    PubMed  Google Scholar 

  • Paschal, B.M., A. Mikami, K.K. Pfister & R.B. Vallee, 1992. Homology of the 74-kD cytoplasmic dynein subunit with a flagellar dynein polypeptide suggests an intracellular targeting function. J. Cell Biol. 118: 1133-1143.

    PubMed  Google Scholar 

  • Petrov, D.A. & D.L. Hartl, 1997. Trash DNA is what gets thrown away: high rate of DNA loss in Drosophila. Gene 205: 279-289.

    PubMed  Google Scholar 

  • Petrov, D.A. & D.L. Hartl, 1998. High rate of DNA loss in the D. melanogaster and D. virilis species groups. Mol. Biol. Evol. 15: 293-302.

    PubMed  Google Scholar 

  • Petrov, D.A., E.R. Lozovskaya & D.L. Hartl, 1996. High intrinsic rate of DNA loss in Drosophila. Nature 384: 346-349.

    PubMed  Google Scholar 

  • Robin, C., R.J. Russell, K.M. Medveczky & J.G. Oakeshott, 1996. Duplication and divergence of the genes of the ?-esterase cluster of D. melanogaster. J. Mol. Evol. 43: 241-252.

    PubMed  Google Scholar 

  • Russell, S.R.H. & K. Kaiser, 1994. A Drosophila melanogaster chromosome-2L repeat is expressed in the male germ line. Chromosoma 103: 63-72.

    PubMed  Google Scholar 

  • Schroer, T.A., E.R. Steuer & M.P. Sheetz, 1989. Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 7: 331-343.

    Google Scholar 

  • Snyder, M. & N. Davidson, 1983. Two gene families clustered in a small region of the Drosophila genome. J. Mol. Biol. 166: 101-118.

    PubMed  Google Scholar 

  • Steffen, W., S. Karki, K.T. Vaughan, R.B. Vallee, E.L.F. Holzbaur, D.G. Weiss & S.A. Kuznetsov, 1997. The involvement of the intermediate chain of cytoplasmic dynein in binding the motor complex to membranous organelles of Xenopus oocytes. Mol. Biol. Cell 8: 2077-2088.

    PubMed  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1990. Evolutionary changes in the organization of the major Lcp gene cluster during sex chromosomal differentiation in the sibling species Drosophila persimilis, D. pseudoobscura and D. miranda. Chromosoma 99: 424-431.

    Google Scholar 

  • Thomas, S. & R.S. Singh, 1992. A comprehensive study of genetic variation in natural population of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis. Mol. Biol. Evol. 9: 507-525.

    PubMed  Google Scholar 

  • Ting, C.T., S.C. Tsaur & C.I. Wu, 2000. The phylogeny of closely related species as revealed by the genealogy of a speciation gene, Odysseus. Proc. Natl. Acad. Sci. USA 97: 5313-5316.

    PubMed  Google Scholar 

  • Ting, C.T., S.C. Tsaur, M.L. Wu & C.I. Wu, 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282: 1501-1504.

    PubMed  Google Scholar 

  • Vaisberg, E.A., M.P. Koonce & J.R. McIntosh, 1993. Cytoplasmic dynein plays a role in mammalian mitotic spindle formation. J. Cell Biol. 123: 849-858.

    PubMed  Google Scholar 

  • Vieira, C.P., J. Vieira & D.L. Hartl, 1997. The evolution of small gene clusters: evidence for an independent origin of the maltase gene cluster in D. virilis and D. melanogaster. Mol. Biol. Evol. 14: 985-993.

    PubMed  Google Scholar 

  • Wang, W., J.M. Zhang, C. Alvarez, A. Llopart & M. Long, 2000. The origin of the Jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17: 1294-1301.

    PubMed  Google Scholar 

  • Wilkerson, C.G., S.M. King, A. Koutoulis, G.J. Pazour & G.B. Witman, 1995. The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein is a WD-repeat protein required for arm assembly. J. Cell Biol. 129: 169-178.

    PubMed  Google Scholar 

  • Wu, C.-I. & A.W. Davis, 1993. Evolution of postmating reproductive isolation: the composite nature of Haldane's rule and its genetic bases. Am. Nat. 142: 187-212.

    Google Scholar 

  • Wu, C.-I., N.A. Johnson & M.F. Palopoli, 1996. Haldane's rule and its legacy: why are there so many sterile males? Trends Ecol. Evol. 11: 281-284.

    Google Scholar 

  • Wu, C.-I., T.W. Lyttle, M.-L. Wu & G.-F. Lin, 1988. Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster. Cell 54: 179-189.

    PubMed  Google Scholar 

  • Xiang, X., S.M. Beckwith & N.R. Morris, 1994. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 91: 2100-2104.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Hartl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranz, J.M., Ponce, A.R., Hartl, D.L. et al. Origin and Evolution of a New Gene Expressed in the Drosophila Sperm Axoneme. Genetica 118, 233–244 (2003). https://doi.org/10.1023/A:1024186516554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024186516554

Navigation