Skip to main content
Log in

Electrodynamics in the Zero-Point Field: On the Equilibrium Spectral Energy Distribution and the Origin of Inertial Mass

  • Published:
Foundations of Physics Letters

Abstract

Attempts at an electromagnetic explanation of the inertial mass of charged particles have recently been revived within the framework of Stochastic Electrodynamics, characterized by the adoption of a classical version of the electromagnetic zero-point field (ZPF). Recent claims of progress in this area have to some extent received support from related claims that the classical equilibrium spectrum of charged matter is that of the classically conceived ZPF. The purpose of this note is to suggest that some strong qualifications should accompany these claims. It is pointed out that a classical massless charge cannot acquire mass from nothing as a result of immersion in any EM field, and therefore that the ZPF alone cannot provide a full explanation of inertial mass. Of greater concern, it is observed that the peculiar circumstances under which classical matter is in equilibrium with the ZPF do not concur with observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. T. H. Boyer, “Classical statistical thermodynamics and electromagnetic zero-point radiation,” Phys. Rev. 180, 19 (1969).

    Article  ADS  Google Scholar 

  2. T. H. Boyer, “Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation,” Phys. Rev. A 7, 1832 (1973).

    Article  ADS  Google Scholar 

  3. C. Itzykson and J.-B. Zuber, Quantum Field Theory, 1st edn. (McGraw-Hill, New York, 1985).

    MATH  Google Scholar 

  4. T. H. Boyer, Chap. 5 in Foundations of Radiation Theory and Quantum Electrodynamics, A. O. Barut, ed. (Plenum, New York, 1980).

    Google Scholar 

  5. M. Ibison and B. Haisch, “Quantum and classical statistics of the electromagnetic zero-point field,” Phys. Rev. A 54, 2737 (1996).

    Article  ADS  Google Scholar 

  6. D. C. Cole, “Entropy and other thermodynamic properties of classical electromagnetic thermal radiation,” Phys. Rev. A 42, 7006 (1990).

    Article  ADS  Google Scholar 

  7. D. C. Cole, “Derivation of the classical electromagnetic zero-point radiation spectrum via a classical thermodynamic operation involving van der Waals forces,” Phys. Rev. A 42, 1847 (1990).

    Article  ADS  Google Scholar 

  8. T. H. Boyer, “Derivation of the blackbody radiation spectrum without quantum assumptions,” Phys. Rev. 182, 1374 (1969).

    Article  ADS  Google Scholar 

  9. T. H. Boyer, “General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems,” Phys. Rev. D 11, 809 (1975).

    Article  ADS  Google Scholar 

  10. T. H. Boyer, “Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation,” Phys. Rev. D 11, 790 (1975).

    Article  ADS  Google Scholar 

  11. T. H. Boyer, Chap. 5 in Foundations of Radiation Theory and Quantum Electrodynamics, 1st edn., A. O. Barut, ed. (Plenum, New York, 1980).

    Google Scholar 

  12. T. H. Boyer, “The classical vacuum,” Sci. Am. 253, 56 (1985).

    Article  Google Scholar 

  13. L. de la Peña and A. M. Cetto, The Quantum Dice. An Introduction to Stochastic Electrodynamics (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  14. W. Nernst, Verh. Dtsch. Phys. Ges 18, 83 (1916).

    Google Scholar 

  15. A. Rueda and B. Haisch, “Contribution to inertial mass by reaction of the vacuum to accelerated motion,” Found. Phys. 28, 1057 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Rueda and B. Haisch, “Inertia as reaction of the vacuum to accelerated motion,” Phys. Lett. A 240, 115 (1998).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Rueda and B. Haisch, in Causality and Locality in Modern Physics, G. Hunter, S. Jeffers, and J. P. Vigier, eds. (Kluwer Academic, Dordrecht, 1998).

    Google Scholar 

  18. P. Braffort, M. Spighel, and C. Tzara, C. R. Acad. Sc. (Paris) 239, 157 (1954).

    Google Scholar 

  19. N. S. Kalitzin, JETP 25, 407 (1953).

    Google Scholar 

  20. T. W. Marshall, “Random electrodynamics,” Proc. R. Soc. Lond. A 276, 475 (1963).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P. W. Milonni, The Quantum Vacuum (Academic, San Diego, 1993).

    Google Scholar 

  22. P. W. Milonni, “Why spontaneous emission?” Am. J. Phys. 52, 340 (1983).

    Article  ADS  Google Scholar 

  23. P. W. Milonni, “Different ways of looking at the electromagnetic vacuum,” Physica Scripta T 21, 102 (1988).

    Article  ADS  Google Scholar 

  24. M. Ibison, “Massless classical electrodynamics,” e-print physics/0106046.

  25. B. Haisch, A. Rueda, and Y. Dobyns, “Inertial mass and the quantum vacuum fields,” Ann. Phys. (Leipzig) 10, 393 (2001).

    Article  ADS  MATH  Google Scholar 

  26. B. Haisch, A. Rueda, and H. E. Puthoff, “Inertia as a zero-point-field Lorentz force,” Phys. Rev. A 49, 678 (1994).

    Article  ADS  Google Scholar 

  27. J. H. van Vleck and D. L. Huber, Rev. Mod. Phys. 49, 939 (1927).

    Article  ADS  Google Scholar 

  28. T. H. Boyer, “Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator,” Phys. Rev. D 13, 2832 (1976).

    Article  ADS  Google Scholar 

  29. L. Pesquera and P. Claverie, “The quartic anharmonic oscillator in stochastic electrodynamics,” J. Math. Phys. 23, 1315 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Blanco, L. Pesquera, and E. Santos, “Equilibrium between radiation and matter for classical relativistic multiperiodic systems. I. Derivation of Maxwell-Boltzmann distribution from Rayleigh-Jeans spectrum,” Phys. Rev. D 27, 1254 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Blanco, L. Pesquera, and E. Santos, “Equilibrum between radiation and matter for classical relativistic multiperiodic systems. II. Study of radiative equilibrium with the Rayleigh-Jeans spectrum,” Phys. Rev. D 29, 2240 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Blanco and L. Pesquera, “Analysis of the compatibility between the Maxwell-Boltzmann distribution and the Rayleigh-Jeans spectrum for classical systems,” Phys. Rev. D 33, 421 (1986).

    Article  ADS  Google Scholar 

  33. H. E. Puthoff, “Source of vacuum electromagnetic zero-point energy,” Phys. Rev. A 40 4857 (1989).

    Article  ADS  Google Scholar 

  34. H. E. Puthoff, “Reply to ‘Comment on “Source of vacuum electromagnetic zero-point energy”’,” Phys. Rev. A 44, 3385 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibison, M. Electrodynamics in the Zero-Point Field: On the Equilibrium Spectral Energy Distribution and the Origin of Inertial Mass. Found Phys Lett 16, 83–90 (2003). https://doi.org/10.1023/A:1024106324631

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024106324631

Navigation