Skip to main content
Log in

Cyanobacterial signature genes

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A comparison of 8 cyanobacterial genomes reveals that there are 181 shared genes that do not have obvious orthologs in other bacteria. These signature genes define aspects of the genotype that are uniquely cyanobacterial. Approximately 25% of these genes have been associated with some function. These signature genes may or may not be involved in photosynthesis but likely they will be in many cases. In addition, several examples of widely conserved gene order involving two or more signature genes were observed. This suggests there may be regulatory processes that have been preserved throughout the long history of the cyanobacterial phenotype. The results presented here will be especially useful because they identify which of the many genes of unassigned function are likely to be of the greatest interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amard B and Bertrand-Sarfati J (1997) Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon. Precambrian Res 81: 197–221.

    Article  CAS  Google Scholar 

  • Brasier MD, Green OR, Jephcoat AP, Kleppe AK, van Kranendonk MJ, Lindsay JF, Steeles A and Grassineau NV (2002) Questioning the evidence for Earth's oldest fossils. Nature 416: 76–81

    Article  PubMed  Google Scholar 

  • Brocks JJ, Logan GA, Buick R and Summons RE (1999) Achaean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Catling DC, Zahnle KJ and McKay C (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293: 839–843

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1999) Lateral genomics. Trends Cell Biol 9: M5–M8

    Article  PubMed  CAS  Google Scholar 

  • Fitz-Gibbon ST and House CH (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27: 4218–4222

    Article  PubMed  CAS  Google Scholar 

  • Gaasterland T and Ragan MA (1998) Constructing multigenome views of whole microbial genomes. Microb Comp Genomics 3: 177–192

    PubMed  CAS  Google Scholar 

  • Graham DE, Overbeek R, Olsen GJ and Woese CR (2000) An archaeal genomic signature. Proc Natl Acad Sci USA 97: 3304– 3308

    Article  CAS  Google Scholar 

  • Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98

    CAS  Google Scholar 

  • Hihara Y, Kamel A, Kanehisa M, Kaplan A and Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793–806

    Article  PubMed  CAS  Google Scholar 

  • Higgins D, Thompson J, Gibson T Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    PubMed  Google Scholar 

  • Huynen M, Snel B, Lathe W and Bork P (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res 10: 1204–1210

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Takemoto K, Mori H and Gojobori T (1999) Evolutionary instability of operon structures disclosed by sequence comparisons of complete microbial genomes. Mol Biol Evol 16: 332–346

    PubMed  CAS  Google Scholar 

  • Jain KK (1999) Strategies and technologies in functional genomics. Drug Discov Today 4: 50–53

    Article  PubMed  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda Mand Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 (supplement). DNA Res 8: 227–253

    Article  CAS  Google Scholar 

  • Kasting JF and Siefert JL (2001) Biogeochemistry. The nitrogen fix. Nature 412: 26–27

    Google Scholar 

  • Knoll AH (1999) PALEONTOLOGY: enhanced: a new molecular window on early life. Science 285: 1025–1026

    Article  PubMed  CAS  Google Scholar 

  • Koonin, EV, Makarova, KS and Aravind, L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Ann Rev Microbiol 55: 709–742

    Article  CAS  Google Scholar 

  • Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, and Koonin EV (1999) Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell. Genome Res 9: 608–628

    PubMed  CAS  Google Scholar 

  • Mushegian AR and Koonin EV (1996) Gene order is not conserved in bacterial evolution. Trends Genet 12: 289–290

    Article  PubMed  CAS  Google Scholar 

  • Ochman H and Bergthorsson U (1995) Genome evolution in enteric bacteria. Curr Opin Genet Dev 5: 734–738

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D and Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96: 4285–4288

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW and Packer BM (1987) Early Achaean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237: 70–73

    PubMed  CAS  Google Scholar 

  • Siefert JL, Martin KA, Abdi F, Widger WR and Fox GE (1997) Conserved gene clusters in bacterial genomes provide further support for the primacy of RNA. J Mol Evol 45: 467–472

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Bork P and Huynen MA (1999) Genome phylogeny based on gene content. Nat Genet 21: 108–110

    Article  PubMed  CAS  Google Scholar 

  • Turner S, Pryer KM, Miao VP and Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Euk Microbiol 46: 327–338

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, K.A., Siefert, J.L., Yerrapragada, S. et al. Cyanobacterial signature genes. Photosynthesis Research 75, 211–221 (2003). https://doi.org/10.1023/A:1023990402346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023990402346

Navigation