Skip to main content
Log in

Pathways and Kinetics of Deslorelin Degradation in an Airway Epithelial Cell Line (Calu-1)

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of this study is to investigate the pathways and kinetics of degradation of deslorelin, pGlu1-His2-Trp3-Ser4-Tyr5-D-Trp6-Leu7-Arg8-ProNHEt9 (Des1-9), in a human airway epithelial cell line (Calu-1).

Methods. The degradation of deslorelin in membrane and cytosolic fractions of Calu-1 cells was studied at 37°C up to 24 h. The degradation products were separated using HPLC and identified by amino acid analysis, sequencing, and mass spectrometry. The rate constants for deslorelin degradation and the formation of degradation products were determined by fitting the concentration vs. time data to pharmacokinetic models using WinNonlinTM. The effect of enzyme inhibitors, captopril, phosphoramidon, and disodium EDTA on deslorelin degradation was also assessed.

Results. Des1-3, Des4-9, and Des5-9 were the deslorelin fragments detected in the membrane fraction. Apart from these degradation products, Des5-7 was also detected in the cytosolic fraction. The deslorelin degradation was 8.5 times faster in the cytosolic fraction compared to the membrane fraction. The disappearance of deslorelin and the kinetics of degradation products could be explained by simple 2 compartment iv bolus model and 1 compartment absorption model, respectively. EDTA and captopril decreased deslorelin degradation in the membrane and cytosolic fractions.

Conclusions. Deslorelin is initially cleaved at the 3-4 bond in the membrane and cytosolic fractions, possibly by a metalloendopeptidase and/or angiotensin converting enzyme, with the degradation being more rapid in the cytosol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Vale, C. Rivier, M. Brown, and J. Rivier. Clinical Endocrinology, 5th Suppl., I. McIntyre (eds.), 2615, Blackwell Scientific Publications, Oxford, 1976.

    Google Scholar 

  2. J. K. Christiansen. The facts about fibroids. Presentation and latest management options. Postgrad. Med. 94:129-137 (1993).

    Google Scholar 

  3. U. B. Kompella. Protein drug delivery. In S. Wu-Pong and Y. Rojanasakul (eds.), Biopharmaceutical Drug Design and Development, Humana Press, New Jersey, 1999 pp. 239-274.

    Google Scholar 

  4. V. H. Lee, A. Yamamoto, and U. B. Kompella. Mucosal penetration enhancers for facilitation of protein and peptide drug absorption. CRC. Crit. Rev. Ther. Drug Carrier Syst. 8:91-192 (1991).

    Google Scholar 

  5. E. Krondahl, A. Tronde, S. Eirefelt, H. Forsma-Bruce, G. Ekström, U. H. Bengtsson, and H. Lennernäs. Regional differences in bioavailability of an opiod tetrapeeptide in vivo in rats after administration to the respiratory tract. Peptides 23:479-488 (2002).

    Google Scholar 

  6. K. N. Koushik, N. Bandi, and U. B. Kompella. Interaction of [D-Trp6, Des-Gly10]. LHRH ethylamide with hydroxypropyl-beta-cyclodextrin (HPβCD): thermodynamics of interaction and protection from degradation. Pharm. Dev. Technol. 6:595-605 (2001).

    Google Scholar 

  7. J. B. Houston and K. E. Kenworthy. In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michealis Menten model. Drug Metab. Dispos. 28:246-254 (2000).

    Google Scholar 

  8. M. C. Schmidt, W. Rubas, and H. P. Merkle. Nasal epithelial permeation of thymotrinan (TP3) versus thymocartin (TP4): Competitive metabolism and self-enhancement. Pharm. Res. 17:222-228 (2000).

    Google Scholar 

  9. U. B. Kompella and B. A. Dani. Metabolism of [Des-Gly10, D-Trp6] LHRH ethylamide in rabbit nasal tissue. Life Sci. 58:2201-2207 (1996).

    Google Scholar 

  10. U. B. Kompella and B. A. Dani. Metabolism of [Des-Gly10, D-Trp6] LHRH ethylamide in the rabbit conjunctiva. J. Ocul. Pharmacol. Ther. 13:163-170 (1997).

    Google Scholar 

  11. B. A. Dani and U. B. Kompella. Inhibition of Corneal Metabolism of Deslorelin by EDTA and ZnCl2. Drug Dev. Ind. Pharm. 24:11-17 (1998).

    Google Scholar 

  12. C. Botti, E. Seregni, S. Menard, P. Collini, E. Tagliabue, M. Campiglio, B. Vergani, C. Ghirelli, P. Aiello, S. Pilotti, and E. Bombardieri. Two novel monoclonal antibodies against the MUC4 tandem repeat reacting with an antigen overexpressed by lung cancer. Int. J. Biol. Markers 15:312-320 (2000).

    Google Scholar 

  13. N. Bandi and U. B. Kompella. Budesonide reduces multidrug resistance-associated protein 1 expression in an airway epithelial cell line (Calu-1). Eur. J. Pharmacol. 437:9-17 (2002).

    Google Scholar 

  14. C. J. Molineaux, A. Lasdun, C. Michaud, and M. Orlowski. Endopeptidase-24.15 is the primary enzyme that degrades leutinizing hormone releasing hormone both in vitro and in vivo. J. Neurochem. 51:624-633 (1988).

    Google Scholar 

  15. M. Brudel, U. Kertscher, H. Berger, and B. Mehlis. Liquid chromatographic-mass spectrometric studies on the enzymatic degradation of gonadotrophin releasing hormone. J. Chromatogr. A 661:55-60 (1994).

    Google Scholar 

  16. A. Lasdun, S. Reznik, C. J. Molineaux, and M. Orlowski. Inhibition of Endopeptidase 24.15 slows the in vivo degradation of leutinizing hormone releasing hormone. Am. Pharmacol. Exp. Ther. 251:439-447 (1989).

    Google Scholar 

  17. U. Kertscher, M. Brudel, B. Mehlis, J. Sandow, and H. Berger. Pathways of degradation of buserelin by rat kidney membrane. J. Pharmacol. Exp. Ther. 273:709-715 (1995).

    Google Scholar 

  18. G. Halmos and A. V. Schally. Changes in subcellular distribution of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) after treatment with the LH-RH antagonist cetrorelix. Proc. Natl. Acad. Sci. USA 99:961-965 (2002).

    Google Scholar 

  19. H. L. Jackman, F. Tan, D. Schraufnagel, T. Dragović, B. Dezsö, R. P. Becker, and E. G. Erdö. Plasma membrane-bound and lysosomal peptidases in human alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 13:196-204 (1995).

    Google Scholar 

  20. X. Yang, Y. Rojanasakul, L. Wang, J. Y. C. Ma, and J. K. H. Ma. Enzymatic degradation of luteinizing hormone releasing hormone (LHRH)/ [D-Ala6]-LHRH in lung pneumocytes. Pharm. Res. 15:1480-1484 (1998).

    Google Scholar 

  21. K. Han, J. S. Park, Y. B. Chung, M. J. Lee, D. C. Moon, and J. R. Robinson. Identification of enzymatic degradation products of leutinizing hormone releasing hormone (LHRH)/[D-Ala6] LHRH in rabbit mucosal homogenates. Pharm. Res. 12:1539-1544 (1995).

    Google Scholar 

  22. J. G. W. Wenzel, K. S. Sreebalaji, K. Koushik, C. Navarre, S. H. Duran, C. H. Rahe, and U. B. Kompella. Pluronic F127 gel formulations of deslorelin and GnRH reduce drug degradation and sustain drug release and effect in cattle. J. Control. Release 85:51-59 (2002).

    Google Scholar 

  23. H. Berger, N. Heinrich, E. Albrecht, U. Kertscher, J. Oehlke, M. Bienert, H. Schafer, I. Baeger, and B. Mehlis. Gonadotrophin-releasing hormone (GnRH) analogs: relationship between their structure proteolytic inactivation and pharmacokinetics in rats. Regul. Pept. 33:299-311 (1991).

    Google Scholar 

  24. D. S. Auld. Removal and replacement of metal ions in metallopeptidases. Methods Enzymol. 248:228-242 (1995).

    Google Scholar 

  25. M. P. Hedger, D. M. Robertson, S. J. Tepe, C. A. Browne, and D. M. de Kretser. Degradation of luteinizing hormone releasing hormone (LHRH) and an LHRH agonist by the rat testis. Mol. Cell. Endocrinol. 46:59-70 (1986).

    Google Scholar 

  26. D. W. Cushman, G. S. Cheung, E. F. Sabo, and M. A. Ondetti. Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids Biochemistry 16:5484-5491 (1977).

    Google Scholar 

  27. P. Leblanc, E. Pattou, A. L'Heritier, and C. Kordon. Some properties of peptidasic activity bound to the anterior pituitary membranes. Biochem. Biophys. Res. Commun. 96:1457-1465 (1980).

    Google Scholar 

  28. B. Spencer-Dene, P. Thorogood, S. Nair, A. J. Kenny, M. Harris, and B. Henderson. Distribution of and a putative role for, the cell surface neutral metallo-endopeptidases during mammalian craniofacial development. Development 120:3213-3226 (1994).

    Google Scholar 

  29. A. J. Kenny and J. Ingram. Proteins of the kidney microvillar membrane. Purification and properties of the phosphoramidon-insensitive endopeptidase (“endopeptidase-2”) from rat kidney. Biochem. J. 245:515-524 (1987).

    Google Scholar 

  30. S. L. Stephenson and A. J. Kenny. The metabolism of neuropeptides: Hydrolysis of peptides by the phophoramidon-insensitive rat kidney enzyme ‘endopeptidase-2’ and by rat microvillar membranes. Biochem. J. 255:45-51 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday B. Kompella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koushik, K., Sunkara, G., Gwilt, P. et al. Pathways and Kinetics of Deslorelin Degradation in an Airway Epithelial Cell Line (Calu-1). Pharm Res 20, 779–787 (2003). https://doi.org/10.1023/A:1023489620394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023489620394

Navigation