Skip to main content
Log in

Variation and Evolution of Meiosis

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Meiosis arose in the evolution of primitive unicellular organisms as a part of sexual process. One type of meiosis, the so-called classical type, predominates in all kingdoms of eukaryotes. Meiosis is controlled by hundreds of genes, both shared with mitosis and specifically meiotic ones. In a wide range of taxa, which in some cases include kingdoms, meiotic genes and features obey Vavilov's law of homologous variation series. Synaptonemal complexes (SCs) temporarily binding homologous chromosomes at prophase I, ensure precise and equal crossing over and interference. SC proteins have 60–80% homology within the class of mammals but differ from the corresponding proteins in fungi and insects. Thus, nonhomologous SC proteins perform similar functions in different taxa. Some recombination enzymes in fungi and plants have common epitopes. The molecular mechanism of recombination is inherited by eukaryotes from prokaryotes and operates in special compartments: SC recombination nodules. Chiasmata, i.e., physical crossovers of nonsister chromatids, are preserved in bivalents until metaphase I due to local cohesion of sister chromatids in the remaining SC fragments. Owing to chiasmata, homologous chromosomes participate in meiosis I in pairs rather than individually, which, along with unipolarity of kinetochores (only in meiosis 1), ensures segregation of homologous chromosomes. The appearance of SC and chiasmata played a key role in the evolution of unicellular organisms since it promoted the development of a progressive type of meiosis. Some lower eukaryotes retain primitive meiosis types. These primitive modes of meiosis also occur in the sex of some insects that is heterozygous for sex chromosomes. I suggest an explanation for these cases. Mutations at meiotic genes impair meiosis; however, due to the preservation of archaic meiotic genes in the genotype, bypass metabolic pathways arise, which provide partial rescue of the traits damaged by mutations. Individual blocks of genetic program of meiotic regulation have probably evolved independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rhoades, M.M., Meiosis, The Cell, vol. 3, Brachet, J. and Mirsky, A.E., Eds., New York: Academic, 1961, vol. 3, pp. 1–75.

    Google Scholar 

  2. John, B., Meiosis, Cambridge: Cambridge Univ. Press, 1990.

    Google Scholar 

  3. Gowen, M.S. and Gowen, J.W., Complete Linkage in Drosophila melanogaster, Am. Nat., 1922, vol. 56, pp. 286–288.

    Google Scholar 

  4. Bogdanov, Yu.F., A Molecular Concept of Meiosis Withstands the Test (Results of the 4th European Conference on Meiosis), Genetika (Moscow), 2000, vol. 36, no. 4, pp. 585–590.

    Google Scholar 

  5. Grishaeva, T.M. and Bogdanov, Yu.F., The Genetic Control of Meiosis in Drosophila, Genetika (Moscow), 2000, vol. 36, no. 10, pp. 1301–1321.

    Google Scholar 

  6. Zickler, D. and Kleckner, N., Meiotic Chromosomes: Integrating Structure and Function, Annu. Rev. Genet., 1999, vol. 33, pp. 603–754.

    Google Scholar 

  7. Klein, S., Sherman, A., and Simchen, G., Regulation of Meiosis and Sporulation in Saccharomyces cerevisiae, The Mycota: I. Growth, Differentiation and Sexuality, Berlin: Springer-Verlag, 1994.

    Google Scholar 

  8. Bogdanov, Yu.F., The European Symposium on Meiosis and Recombination, Genetika (Moscow), 1998, vol. 34, no. 12, pp. 1726–1728.

    Google Scholar 

  9. Vavilov, N.I., Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti (The Law of Homological Series in Hereditary Variation), Leningrad: Nauka, 1987.

    Google Scholar 

  10. Vorontsov, N.N., On the Homologous Variation, Problemy kibernetiki (Problems in Cybernetics), Lyapunova, A.A., Ed., 1966, no. 16, pp. 221–229.

  11. Takhtadzhyan, A.L., Sistema i filogeniya tsvetkovykh rastenii (The System and Phylogeny of Flowering Plants), Moscow: Nauka, 1966.

    Google Scholar 

  12. Timofeeff-Ressovsky, N.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (A Brief Essay on the Theory of Evolution), Moscow: Nauka, 1976.

    Google Scholar 

  13. Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Ideas in Biology), Moscow: Progress-Traditsiya, 1999.

    Google Scholar 

  14. Yablokov, A.V. and Yusufov, A.G., Evolyutsionnoe uchenie (The Theory of Evolution), Moscow: Vysshaya Shkola, 1981.

    Google Scholar 

  15. Moh, S.C. and Nilan, R.A., “Short” Chromosome: A Mutant in Barley Induced by Atomic Bomb Irradiation, Cytologia (Tokyo), 1954, vol. 19, pp. 48–53.

    Google Scholar 

  16. Sosnikhina, S.P., Fedotova, Yu.S., Smirnov, V.G., et al., A Study of the Genetic Control of Meiosis in Rye, Genetika (Moscow), 1994, vol. 30, no. 8, pp. 1043–1056.

    Google Scholar 

  17. Sosnikhina, S.P., Kirillova, G.A., Chakova, N.N., et al., The mei10 Recessive Mutation Disturbing the Meiotic Cycle in Rye, Genetika (Moscow), 1996, vol. 32, no. 9, pp. 1248–1255.

    Google Scholar 

  18. Timofeeva, L.P. and Golubovskaya, I.N., A New-Type Maize Desinaptic Gene Revealed by Microscopic Examination of Synaptonemal Complexes, Tsitologiya, 1991, vol. 33, no. 1, pp. 3–8.

    Google Scholar 

  19. Jenkins, G. and Okumus, A., Indiscriminate Synapsis in Achiasmate Allium fistulosum L. (Lilliacea), J. Cell Sci., 1992, vol. 103, pp. 415–422.

    Google Scholar 

  20. Fedotova, Yu.S., Bogdanov, Yu.F., Gadzhiyeva, S.A., et al., Meiotic Mutants of Rye Secale cereale L.: II. The Nonhomologous Synapsis in Desynaptic Mutants sy7 and sy10, Theor. Appl. Genet., 1994, vol. 88, pp. 1929–1936.

    Google Scholar 

  21. Bogdanov, Yu.F., Grishaeva, T.M., Kolomiets, O.L., and Fedotova, Yu.S., Cytogenetic Regularities of Meiotic Chromosome Synapsis in Animals and Plants, Genetika (Moscow), 1996, vol. 32, no. 11, pp. 1474–1493.

    Google Scholar 

  22. Sosnikhina, S.P., Kirillova, G.A., Mikhailova, E.I., et al., The Genetic Control of Meiotic Chromosome Synapsis in Rye Secale cereale L.: The sy19 Gene Causing Heterologous Synapsis, Genetika (Moscow), 2001, vol. 37, no. 1, pp. 81–90.

    Google Scholar 

  23. Sosnikhina, S.P., Kirillova, G.A., Tikholiz, O.A., et al., Expression of the sy2 Mutation Causing Nonhomologous Meiotic Synapsis in Diploid Rye Secale cereale, Genetika (Moscow), 2002, vol. 38, no. 2, pp. 216–226.

    Google Scholar 

  24. Zickler, D. and Kleckner, N., The Leptotene–Zygotene Transition of Meiosis, Annu. Rev. Genet., 1998, vol. 32, pp. 619–697.

    Google Scholar 

  25. Mikhailova, E.I., Sosnikhina, S.P., Kirillova, G.A., et al., Nuclear Dispositions of Subtelomeric and Pericentromeric Chromosomal Domains during Meiosis in Asynaptic Mutants of Rye, J. Cell Sci., 2001, vol. 114, pp. 1875–1882.

    Google Scholar 

  26. Scherthan, H., Loidl, J., and Trelles-Sticken, E., Kar2p Is not Required for Bouquet Formation in Haploid Yeast Meiosis, J. Exp. Bot., 2001, vol. 52, suppl., pp. 110–111.

    Google Scholar 

  27. Buonomo, S.B., Clyne, R.K., Fuchs, J., et al., Disjunction of Homologous Chromosomes in Meiosis I Depends on Proteolytic Cleavage of the Meiotic Cohesin Rec8 by Separin, Cell (Cambridge, Mass.), 2000, vol. 103, pp. 387–398.

    Google Scholar 

  28. Uhlmann, F., Lottspiech, F., and Nasmyth, K., Sister-Chromatid Separation at Anaphase Onset Is Promoted by Cleavage of the Cohesin Subunit Scc1, Nature, 1999, vol. 400, pp. 37–42.

    Google Scholar 

  29. Murray, A.W. and Szostak, J.W., Chromosome Segregation in Mitosis and Meiosis, Annu. Rev. Cell Biol., 1985, vol. 1, pp. 289–315.

    Google Scholar 

  30. Kerrebrock, A.W., Miyazaki, W.Y., Birnby, D., and Orr-Weaver, T.L., The Drosophila mei-S332 Gene Promotes Sister-Chromatid Cohesion in Meiosis Following Kinetochore Differentiation, Genetics, 1992, vol. 130, pp. 827–847.

    Google Scholar 

  31. Bickel, S.E., Wyman, D.W., and Orr-Weaver, T.L., Mutational Analysis of the Drosophila Sister-Chromatid Cohesion Protein ORD and Its Role in the Maintenance of Centromeric Cohesion, Genetics, 1997, vol. 146, pp. 1319–1331.

    Google Scholar 

  32. Swanson, C.P., Cytology and Cytogenetics, London: Macmillan, 1960.

    Google Scholar 

  33. Roeder, G.S., Meiotic Chromosomes: It Takes Two to Tango, Genes Dev., 1997, vol. 11, pp. 2600–2621.

    Google Scholar 

  34. Szostak, J.W., Orr-Weaver, T.L., Rothstein, R.J., and Stahl, F.W., The Double-Strand Break Repair Model for Recombination, Cell (Cambridge, Mass.), 1983, vol. 33, pp. 25–35.

    Google Scholar 

  35. Moses, M.J., Chromosome Structure in Crayfish Spermatocytes, J. Biophys. Biochem. Cytol., 1956, vol. 2, pp. 215–218.

    Google Scholar 

  36. Fawcett, D.V., The Fine Structure of Chromosomes in the Meiotic Prophase of Vertebrate Spermatocytes, J. Biophys. Biochem. Cytol., 1956, vol. 2, pp. 403–406.

    Google Scholar 

  37. Moses, M.J., Synaptonemal Complex, Annu. Rev. Genet., 1968, vol. 2, pp. 363–412.

    Google Scholar 

  38. Bogdanov, Yu.F., The Synaptonemal Complex, Tsitologiya, 1971, vol. 13, no. 6, pp. 760–767.

    Google Scholar 

  39. Westergaard, M. and von Wettstein, D., The Synaptonemal Complex, Annu. Rev. Genet., 1972, vol. 6, pp. 71–110.

    Google Scholar 

  40. Bogdanov, Yu.F., Chromosome Ultrastructure in Meiosis and the Synaptonemal Complex, Tsitologiya i genetika meioza (Cytology and Genetics of Meiosis), Khvostova, V.V. and Bogdanov, Yu.F., Eds., Moscow: Nauka, 1975, pp. 58–95.

    Google Scholar 

  41. von Wettstein, D., Rasmussen, S.W., and Holm, P.B., The Synaptonemal Complex in Genetic Segregation, Annu. Rev. Genet., 1984, vol. 18, pp. 331–413.

    Google Scholar 

  42. Heyting, C., Synaptonemal Complex: Structure and Function, Curr. Opin. Cell Biol., 1996, vol. 8, pp. 389–396.

    Google Scholar 

  43. Stack, S.M. and Anderson, L.K., A Model for Chromosome Structure during the Mitotic and Meiotic Cell Cycle, Chromosome Res., 2000, vol. 9, pp. 175–198.

    Google Scholar 

  44. Holm, P.B., Chromosome Pairing and Chiasma Formation in Allohexaploid Wheat Triticum aestivum, Analyzed by Spreading of Meiotic Nuclei, Carlsberg Res. Commun., 1986, vol. 51, pp. 239–294.

    Google Scholar 

  45. Fedotova, Yu.S., Kolomiets, O.L., and Bogdanov, Yu.F., Synaptonemal Complex Transformations in Rye Microsporocytes at the Diplotene Stage of Meiosis, Genome, 1989, vol. 32, pp. 816–823.

    Google Scholar 

  46. Tung, K.S. and Roeder, G.S., Meiotic Chromosome Morphology and Behavior in zip1 Mutants of Saccharomyces cerevisiae, Genetics, 1998, vol. 149, pp. 817–832.

    Google Scholar 

  47. Borodin, P.M., Gorlov, I.P., Agulnik, A.I., et al., Chromosome Pairing and Chiasma Distribution in Mice Heterozygous for Translocation in Chromosomes 16 and 17, Chromosoma, 1991, vol. 101, pp. 262–268.

    Google Scholar 

  48. Auger, D.L. and Sheridan, W.F., Negative Crossover Interference in Maize Translocation Heterozygotes, Genetics, 2001, vol. 159, pp. 1717–1726.

    Google Scholar 

  49. Bogdanov, Yu.F., Formation of Cytoplasmic Synaptonemal-like Polycomplexes at Leptotene and Normal Synaptonemal Complexes at Zygotene in Ascaris suum Male Meiosis, Chromosoma, 1977, vol. 61, pp. 1–21.

    Google Scholar 

  50. Seravin, L.N. and Gudkov, A.V., Agamnye sliyaniya protistov i proiskhozhdenie polovogo protsessa (Agamic Fusion in Protists and the Origin of the Sexual Process), St. Petersburg: Biol. Inst., 1999.

    Google Scholar 

  51. Zickler, D., Fine Structure of Chromosome Pairing in Ten Ascomycetes: Meiotic and Premeiotic (Mitotic) Synaptonemal Complexes, Chromosoma, 1973, vol. 40, pp. 401–416.

    Google Scholar 

  52. Eijpe, M., Offenberg, H.H., Ravenkova, E., et al., Sister Chromatid Cohesion Proteins in Mammalian Meiosis, J. Epx. Bot., 2001, vol. 52, suppl., pp. 107–108.

    Google Scholar 

  53. Roehr, H., Klein, U., and Stahl, U., Recombination: Meiotic Recombination in Fungi, Prog. Bot., 1997, vol. 58, pp. 308–358.

    Google Scholar 

  54. Penkina, M.V., Karpova, O.I., and Bogdanov, Yu.F., Synaptonemal Complex Proteins: Specific Proteins of Meiotic Chromosomes, Mol. Biol. (Moscow), 2002, vol. 36, no. 3, pp. 397–407.

    Google Scholar 

  55. Pogosyants, E.E., On Several Specific Features of Mammalian Meiosis, Tsitologiya, 1971, vol. 13, no. 4, pp. 447–453.

    Google Scholar 

  56. Bogdanov, Yu.F., Dadashev, S.Ya., and Grishaeva, T.M., Comparative Genomics and Proteomics of Drosophila, Brenner Nematode, and Arabidopsis: Identification of Functionally Similar Genes and Proteins Involved in Meiotic Chromosome Synapsis, Genetika (Moscow), 2002, vol. 38, no. 8, pp. 1078–1096.

    Google Scholar 

  57. Bogdanov, Yu.F., Dadashev, S.Ya., and Grishaeva, T.M., The Drosophila melanogaster CG17604 Gene: A Possible Functional Homolog of the Yeast ZIP1 and Mammalian SCP1 (SYCP1) Genes Coding for Synaptonemal Complex Proteins, Genetika (Moscow), 2002, vol. 38, no. 1, pp. 108–112.

    Google Scholar 

  58. Page, S.L. and Hawley, R.S., c(3)G Encodes a Drosophila Synaptonemal Complex Protein, Genes Dev., 2001, vol. 15, no. 23, pp. 3130–3143.

    Google Scholar 

  59. Holm, P.B., Rasmussen, S.W., Zickler, D., et al., Chromosome Pairing, Recombination Nodules and Chiasma Formation in the Basidiomycetes Coprinus cinereus, Carsberg Res. Commun., 1981, vol. 46, pp. 305–346.

    Google Scholar 

  60. Bishop, D.K., RecA Homologs Dmc1 and Rad51 Interact to Form Multiple Nuclear Complex Prior to Meiotic Chromosome Synapsis, Cell (Cambridge, Mass.), 1994, vol. 79, pp. 1081–1092.

    Google Scholar 

  61. Anderson, L.K., Offenberg, H.H., Verkuijlen, W.M.H.C., and Heyting, C., RecA-Like Proteins Are Components of Early Meiotic Nodules in Lily, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 6868–6873.

    Google Scholar 

  62. Moens, P.B., Kolas, N., Tarsounas, M., et al., Interaction of Recombination Proteins RAD51/DMC1, RPA and BLM in Mouse and Rat Synaptonemal Complex-Associated Recombination Nodules, J. Exp. Bot., 2001, vol. 52, suppl., p. 101.

    Google Scholar 

  63. Rinaldo, C., Bazzicalupo, P., Federle, S., et al., Roles for Caenorhabditis elegans Rad51 In Meiosis and in Resistance to Ionizing Radiation during Development, Genetics, 2002, vol. 160, pp. 171–179.

    Google Scholar 

  64. Raikov, I.B., Yadro prosteishikh. Morfologiya i evolyutsiya (The Protist Nucleus: Morphology and Evolution), Leningrad: Nauka, 1978.

    Google Scholar 

  65. Raikov, I.B., Meiosis in Protists: Recent Advances and Persisting Problems, Eur. J. Protistol., 1995, vol. 31, pp. 1–7.

    Google Scholar 

  66. Kundu, S.C. and Bogdanov, Yu.F., Ultrastructural Studies of Late Meiotic Prophase Nuclei of Spermatocytes in Ascaris suum, Chromosoma, 1979, vol. 70, pp. 375–384.

    Google Scholar 

  67. Zhuchenko, A.A. and Korol', A.B., Rekombinatsiya v evolyutsii i selektsii (Recombination in Evolution and Breeding), Moscow: Nauka, 1985.

    Google Scholar 

  68. Maguire, M.P., Evolution of Meiosis, J. Theor. Biol., 1992, vol. 154, pp. 43–55.

    Google Scholar 

  69. Crow, J.F., The Importance of Recombination, Evolution of Sex, Michod, R.E. and Levin, B.P., Eds., Sunderland, Mass.: Sinn. Associates, 1988, pp. 56–73.

    Google Scholar 

  70. Maynard Smith, J., The Evolution of Recombination, Evolution of Sex, Michod, R.E. and Levin, B.P., Eds., Sunderland, Mass.: Sinn. Associates, 1988, pp. 106–125.

    Google Scholar 

  71. Kirckpatric, M. and Jenkins, C.D., Genetic Segregation and the Maintenance of Sexual Reproduction, Nature, 1989, vol. 339, pp. 300–301.

    Google Scholar 

  72. Gershenzon, S.M., Mnogoobraznoe znachenie meioza dlya problem obshchei biologii (Diverse Significance of Meiosis for the Problems of General Biology), Kiev: Naukova Dumka, 1996.

    Google Scholar 

  73. Heyer, W.-D. and Kohli, J., Homologous Recombination: Introduction, Experientia, 1994, vol. 50, pp. 189–191.

    Google Scholar 

  74. Heyer, W.-D., The Search for the Right Partner: Homologous Pairing and DNA Strand Exchange Proteins in Eukaryotes, Experientia, 1994, vol. 50, pp. 223–233.

    Google Scholar 

  75. Cooper, K.W., Meiotic Conjunctive Elements Not Involving Chiasmata, Proc. Natl. Acad. Sci. USA, 1964, vol. 52, pp. 1248–1255.

    Google Scholar 

  76. Vikki, N., Proximal vs. Distal Collachores in Coleopteran Chromosomes, Heredity, 1989, vol. 110, pp. 104–107.

    Google Scholar 

  77. Grishaeva, T.M. and Bogdanov, Yu.F., Dependence on Gene Balance for Synaptonemal Complex Formation in Drosophila melanogaster, Genome, 1988, vol. 30, pp. 258–264.

    Google Scholar 

  78. Severtsov, A.N., Major Directions of the Evolutionary Process, Morfobiologicheskaya teoriya evolyutsii (The Morphobiological Theory of Evolution), Moscow: Mosk. Gos. Univ., 1967, 3rd ed.

    Google Scholar 

  79. Bogdanov, Yu.F., Homological Series in Variation of Meiotic Traits: Conservation and Evolution, Evolyutsiya, ekologiya, bioraznoobrazie (Evolution, Ecology, Biodiversity), Krasilov, V.A., Ed., Moscow: Mosk. Gos. Univ., 2001, pp. 60–75.

    Google Scholar 

  80. Molon-Noblot, S. and Desportes, I., Mise en evidence des complexes synaptonematiques dans le noyau meiotique d'un Sporozaire, la gregarine Grebnickiella gracilis (Grebnicki), parasite de la scolopendre Scolopendra cingulata, Compt. Rend. Acad. Sci. Paris, Ser. D, 1977, vol. 285, pp. 217–219.

    Google Scholar 

  81. Raikov, I.B., New Data on Meiosis in Protists, Genetika, biokhimiya i tsitologiya meioza (Genetics, Biochemistry, and Cytology of Meiosis), Bogdanov, Yu.F. and Vasetskii, S.G., Eds., Moscow: Nauka, 1982, pp. 75–80.

    Google Scholar 

  82. Rasmussen, S.W., The Transformation of the Synaptonemal Complex into the “Elimination Chromatin” in Bombyx mori Oocytes, Chromosoma, 1977, vol. 60, pp. 205–221.

    Google Scholar 

  83. Cachon, J., Cachon, M., and Lecher, P., Nouvelle interpretation de la division nucleare des Phaeodaries (Actinopodes), Compt. Rend. Acad. Sci. Paris, Ser. D, 1973, vol. 276, pp. 3311–3314.

    Google Scholar 

  84. Lecher, P., The Synaptonemal Complex in the Bipartition Division of the Radiolarien Aulocantha scolyantha, Can. J. Genet. Cytol., 1978, vol. 20, pp. 80–95.

    Google Scholar 

  85. Akif'ev, A.P., Grishanin, A.K., and Degtyarev, S.V., Chromatin Diminution, a Key to Explaining the Paradox of Eukaryotic Genome Size and Several Mechanisms of Genetic Isolation, Genetika (Moscow), 2002, vol. 38, no. 5, pp. 595–606.

  86. Okada, Y., Wachi, M., Hirata, A., et al., Cytoplasmic Axial Elements in Escherichia coli Cells: Possible Functions in the Mechanism of Chromosome Segregation and Cell Division, J. Bacteriol., 1994, vol. 176, pp. 917–922.

    Google Scholar 

  87. Norris, V., Turnok, G., and Siges, D., The Escherichia coli Endoskeleton, Mol. Microbiol., 1996, vol. 19, pp. 197–204.

    Google Scholar 

  88. Wheeler, R.T. and Shapiro, L., Bacterial Chromosome Segregation: Is There a Mitotic Apparatus?, Cell (Cambridge, Mass.), 1997, vol. 88, pp. 577–579.

    Google Scholar 

  89. Prozorov, A.A., The Bacterial Genome: Nucleoid, Chromosome, Nucleotide Map, Mikrobiologiya, 1998, vol. 67, no. 4, pp. 437–451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, Y.F. Variation and Evolution of Meiosis. Russian Journal of Genetics 39, 363–381 (2003). https://doi.org/10.1023/A:1023345311889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023345311889

Keywords

Navigation