Skip to main content
Log in

Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Large increases in nitrogen (N) inputs to terrestrial ecosystems typically have small effects on immediate N outputs because most N is sequestered in soil organic matter. We hypothesized that soil organic N storage and the asynchrony between N inputs and outputs result from rapid accumulation of N in stable soil organic pools. We used a successional sequence on floodplains of the Tanana River near Fairbanks, Alaska to assess rates of stable N accumulation in soils ranging from 1 to 500+ years old. One-year laboratory incubations with repeated leaching separated total soil N into labile (defined as inorganic N leached) and stable (defined as total minus labile N) pools. Stable N pools increased faster (∼2 g N m−2 yr−1) than labile N (∼0.4 g N m−2 yr−1) pools during the first 50 years of primary succession; labile N then plateaued while stable and total N continued to increase. Soil C pools showed similar trends, and stable N was correlated with stable C (r2 = 0.95). From 84 to 95 % of soil N was stable during our incubations. Over successional time, the labile N pool declined as a proportion of total N, but remained large on an aerial basis (up to 38 g N m−2). The stoichiometry of stable soil N changed over successional time; C:N ratios increased from 10 to 22 over 275 years (r2 = 0.69). A laboratory 15N addition experiment showed that soils had the capacity to retain much more N than accumulated naturally during succession. Our results suggest that most soil N is retained in a stable organic pool that can accumulate rapidly but is not readily accessible to microbial mineralization. Because stable soil organic matter and total ecosystem organic matter have flexible stoichiometry, net ecosystem production may be a poor predictor of N retention on annual time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber J., McDowell W., Nadelhoffer K., Magill A., Berntson G., Kamakea M. et al. 1998. Nitrogen saturation in temperate ecosystems. Bioscience 48: 921-934.

    Google Scholar 

  • Adams P.C. 1999. The dynamics of white spruce populations on a boreal river floodplain. PhD Dissertation, Duke University, Durham, USA.

    Google Scholar 

  • Adair E.C. 2001. Nitrogen accumulation and cycling in riparian soils along the Green and Yampa rivers. MS thesis, Colorado State University, Fort Collins, USA.

    Google Scholar 

  • Agren G. and Bosatta E. 1988. Nitrogen Saturation of Terrestrial Ecosystems. Environ. Pollut. 54: 185- 197.

    Google Scholar 

  • Axelsson G. and Berg B. 1988. Fixation of ammonia (15N) to Pinus silvestris needle litter in different stages of decomposition. Scand. J. Forest Res. 3: 273-279.

    Google Scholar 

  • Binkley D., Burnham H. and Allen H.A. 1999. Water quality impacts of forest fertilization with nitrogen and phosphorus. Forest Ecol. Manag. 121: 191-213.

    Google Scholar 

  • Binkley D., Suarez F., Stottlemyer R. and Caldwell B. 1997. Ecosystem development on terraces along the Kugururok River, northwest Alaska. Écoscience 4: 311-318.

    Google Scholar 

  • Boggs K. and Weaver T. 1994. Changes in vegetation and nutrient pools during riparian succession. Wetlands 14: 98-109.

    Google Scholar 

  • Bredemeier M., Blanck K., Xu Y.-J., Tietema A., Boxman A.W., Emmett B. et al. 1998. Input-output budgets at the NITREX sites. Forest Ecol. Manag. 101: 57-64.

    Google Scholar 

  • Burge W.D. and Broadbent F.E. 1961. Fixation of ammonia by organic soils. Soil Sci. Soc. Am. P. 25: 199-204.

    Google Scholar 

  • Chang S.X., Preston C.M. and Weetman C.F. 1999. Availability of residual 15N in a coniferous forest soil: a greenhouse bioassay and comparison with chemical extractions. Forest Ecol. Manag. 117: 199-209.

    Google Scholar 

  • Chapin F.S. III, Walker L.R., Fastie C.L. and Sharmon L.C. 1994. Mechanisms of primary succession following deglaciaction at Glacier Bay, Alaska. Ecol. Monogr. 64: 149-175.

    Google Scholar 

  • Clinton P.W., Newman R.H. and Allen R.B. 1995. Immobilization of 15N in forest litter studied by 15N CPMAS NMR spectroscopy. Eur. J. Soil Sci. 46: 551-556.

    Google Scholar 

  • Cole D.W. and Rapp M. 1981. Elemental cycling in forest ecosystems. In: Reichle D. (ed.), Dynamic properties of forest ecosystems. International Biological Program 23. Cambridge University Press, Cambridge, pp. 341-409.

    Google Scholar 

  • Crews T.E., Kitayama K., Fownes J.H., Riley R.H., Herbert D.A., Mueller-Dombois D. et al. 1995. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76: 1407-1424.

    Google Scholar 

  • Crocker R.L. and Major J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol. 43: 427-448.

    Google Scholar 

  • Currie W.S. and Nadelhoffer K.J. 1999. Dynamic redistribution of isotopically labeled cohorts of nitrogen inputs in two temperate forests. Ecosystems 2: 4-18.

    Google Scholar 

  • Dail D.B., Davidson E.A., and Chorover J. 2001. Rapid abiotic transformation of nitrate in an acidic forest soil. Biogeochemistry 54: 131-146.

    Google Scholar 

  • Dickenson B.A. and Crocker R.L. 1953. A chronosequence of soils and vegetation near Mt. Shasta, California. J. Soil Sci. 4: 142-154.

    Google Scholar 

  • Dise N.B. and Wright R.F. 1995. Nitrogen leaching from European forest in relation to nitrogen deposition. Forest Ecol. Manag. 71: 153-161.

    Google Scholar 

  • Drury 1956. Bog flats and physiographic processes in the upper Kuskokwim river region, Alaska. Contributions to the Gray Herbarium. Harvard University 178.

  • Emmett B.A., Boxman D., Bredemeier M., Gundersen P., Kjonaas O.J., Moldan F. et al. 1998. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems 1: 352-360.

    Google Scholar 

  • Flanagan P.W. and Van Cleve K. 1983. Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Can. J. Forest Res. 13: 795-817.

    Google Scholar 

  • Goodale C.L., Aber J.D. and McDowell W.H. 2000. The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems 3: 433-450.

    Google Scholar 

  • Hart S.C., Nason G.E., Myrold D.D. and Perry D.A. 1994. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75: 880-891.

    Google Scholar 

  • He X.-T., Stevenson F.J., Mulvaney R.L. and Kelley K.R. 1988. Incorporation of newly immobilized 15N into stable organic forms in soil. Soil Bio. Biochem. 20: 75-81.

    Google Scholar 

  • Johnson D., Lindberg S., Van Miegroet H., Lovett G.M., Cole D.W., Mitchell M.J. et al. 1993. Atmospheric deposition, forest nutrient status, and forest decline: Implications of the integrated forest study. In: Huettl R.F. and Mueller-Dombois D. (eds), Forest decline in the Atlantic and Pacific region. Springer-Verlag, Berlin, pp. 66-81.

    Google Scholar 

  • Johnson D. 1992. Nitrogen retention in forest soils. J. Environ. Qual. 21: 1-12.

    Google Scholar 

  • Johnson D., Cheng W. and Burke I. 2000. Biotic and abiotic nitrogen retention in a variety of forest soils. Soil Sci. Soc. Am. J. 64: 1503-1514.

    Google Scholar 

  • Kaye J.P., Binkley D., Zou X. and Parrotta J. 2002. Non-labile 15nitrogen retention beneath three tree species in a tropical plantation. Soil Sci. Soc. Am. J. (in press).

  • Kaye J.P., Resh S.C., Kaye M.W. and Chimner R. 2000. Nutrient and carbon dynamics in a replacement series of Eucalyptus and Albizia trees. Ecology 81: 3267-3273.

    Google Scholar 

  • Klingensmith K.M. and Van Cleve K. 1993a. Denitrification and nitrogen-fixation in floodplain successional soils along the Tanana River, interior Alaska. Can. J. Forest Res. 23: 956-963.

    Google Scholar 

  • Klingensmith K.M. and Van Cleve K. 1993b. Patterns of nitrogen mineralization and nitrification in floodplain successional soils along the Tanana River, interior Alaska. Can. J. Forest Res. 23: 964- 969.

    Google Scholar 

  • Lichter J. 1998. Primary succession and forest development on coastal Lake Michigan sand dunes. Ecol. Monogr. 68: 487-510.

    Google Scholar 

  • Mann D.H., Fastie C.L., Rowland E.L. and Bigelow N.H. 1995. Spruce succession, disturbance, and geomorphology on the Tanana River floodplain, Alaska. Écoscience 2: 184-199.

    Google Scholar 

  • Marion G.M., Van Cleve K., Dyrness C.T. and Black C.H. 1993. The soil chemical environment along a forest primary successional sequence on the Tanana River floodplain, interior Alaska. Can. J. Forest Res. 23: 914-922.

    Google Scholar 

  • McNulty S.G., Aber J.D. and Boone R.D. 1991. Spatial changes in forest floor and foliar chemistry of spruce-fir forests across New England. Biogeochemistry 14: 13-29.

    Google Scholar 

  • Mortland M.M. and Wolcott A.R. 1965. Sorption of inorganic nitrogen compounds by soil materials. In: Bartholomew V.W. and Clark F.E. (eds), Soil nitrogen. Agronomy Monograph 10. Soil Science Society of America, Madison, WI, USA, pp. 150-197.

    Google Scholar 

  • Motavalli P., Frey S. and Scott N. 1995. Effects of filter type and extraction efficiency on nitrogen mineralization measurements using the aerobic leaching soil incubation method. Biol. Fert. Soils 20: 197-204.

    Google Scholar 

  • National Atmospheric Deposition Program. Isopleth Maps. N deposition (from NO3 and NH4) (kg/ha). Verified 12/15/01. NADP 2000., http://nadp.sws.uiuc.edu/isopleths/maps2000/..

  • Nadelhoffer K.J. 1990. Microlysimeter for measuring nitrogen mineralization and microbial respiration in aerobic soil incubations. Soil Sci. Soc. Am. J. 54: 411-415.

    Google Scholar 

  • Nadelhoffer K.J., Emmett B.A., Gundersen P., Kjonaas O.J., Koopmans C.J., Schleppi P. et al. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398: 145-148.

    Google Scholar 

  • Nommik H. 1970. Non-exchangeable binding of ammonium and amino nitrogen by Norway Spruce raw humus. Plant Soil 33: 581-595.

    Google Scholar 

  • Nommik H. and Vahtras K. 1982. Retention and fixation of ammonium and ammonia in soils. In: Stevenson F.J., Bremner J.M., Hauck R.D. and Keeney D.R. (eds), Nitrogen in agricultural soils. Agronomy. Vol. 22. American Society of Agronomy, Madison, Wisconsin, USA, pp. 123-172.

    Google Scholar 

  • Nohrstedt H.O., Sidstrom U., Ring E., Nasholm T., Hogberg P. and Persson T. 1996. Nitrate in soil water in three Norway spruce stands in southwest Sweden as related to N-deposition and soil, stand, and foliage properties. Can. J. of Forest Res. 26: 836-848.

    Google Scholar 

  • Oades J.M. 1988. The retention of organic matter in soils. Biogeochemistry 5: 35-70.

    Google Scholar 

  • Preston C. and Mead D.J. 1994a. Growth response and recovery of 15N-fertilizer one and eight growing seasons after application to lodgepole pine in British Columbia. Forest Ecol. Manag. 65: 219-229.

    Google Scholar 

  • Preston C.M., Rauthan B.S., Rodger C. and Ripmeester J.A. 1982. A hydrogen-1, carbon-13, and nitrogen-15 nuclear magnetic resonance study of p-benzoquinone polymers incorporating amino nitrogen compounds (“synthetic humic acids”). Soil Sci. 134: 277-293.

    Google Scholar 

  • Perakis S.S. and Hedin L.O. 2001. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, southern Chile. Ecology 82: 2245-2260.

    Google Scholar 

  • Perakis S.S. and Hedin L.O. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415: 416-419.

    Google Scholar 

  • Reiners W. 1986. Complementary models for ecosystems. Am. Nat. 127: 59-73.

    Google Scholar 

  • Reuss R., Van Cleve K., Yarie J. and Viereck L. 1996. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Can. J. Forest Res. 26: 1326-1336.

    Google Scholar 

  • Ring E. 1995. Nitrogen leaching before and after clear-felling of fertilized experimental plots in Pinus sylvestris stand in central Sweden. Forest Ecol. Manag. 72: 151-166.

    Google Scholar 

  • Robertson G.P. and Paul E.A. 1999. Decomposition and a soil organic matter dynamics. In: Sala O., Jackson R., Mooney H. and Howarth R. (eds), Methods in Ecosystem Science. Springer, New York, pp. 104-116.

    Google Scholar 

  • Schimel J.P., Cates R.G. and Ruess R. 1998. The role of balsam poplar secondary chemicals in controlling soil nutrient dynamics through succession in the Alaskan taiga. Biogeochemistry 42: 221-234.

    Google Scholar 

  • Schwendenmann L. 2000. Soil properties of boreal riparian plant communities in relation to natural succession and clear-cutting, Peace River Lowlands, Wood Buffalo National park, Canada. Wat. Air Soil Poll. 122: 449-467.

    Google Scholar 

  • Smith J.L. and Paul E.A. 1990. The significance of soil microbial biomass estimations. In: Bollag J.M. and Stotzky G. (eds), Soil Biochemistry. Marcel Dekker, New York, pp. 357-396.

    Google Scholar 

  • Sollins P., Spycher G. and Topik C. 1983. Processes of soil organic-matter accretion at a mudflow chronosequence, Mt. Shasta, California. Ecology 64: 1273-1282.

    Google Scholar 

  • Stanford G., Legg J.O. and Chichester F.W. 1970. Transformations of fertilizer nitrogen in soil. Plant and Soil 33: 425-435.

    Google Scholar 

  • Stanford G. and Smith S. 1972. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. P. 36: 465-472.

    Google Scholar 

  • Stark J.M. and Hart S.C. 1997. High rates of nitrification and nitrate turnover in undisturbed coniferous forests. Nature 385: 61-64.

    Google Scholar 

  • Strickland T.C., Sollins P., Rudd N. and Schimel D.S. 1992. Rapid stabilization and mobilization of 15N in forest and range soils. Soil Biol. Biochem. 24: 849-855.

    Google Scholar 

  • Thorn K.A. and Mikita M.A. 1992. Ammonia fixation by humic substances: a nitrogen-15 and carbon-13 NMR study. Sci.Total Environ. 113: 67-87.

    Google Scholar 

  • Van Cleve K., Dyrness C.T., Marion G.M. and Erickson R. 1993a. Control of soil development on the Tanana River floodplain, interior Alaska. Can. J. Forest Res. 23: 941-955.

    Google Scholar 

  • Van Cleve K., Oliver L., Schletner R., Viereck L.A. and Dyrness C.T. 1983. Productivity and nutrient cycling in taiga forest ecosystems. Can. J. For. Res. 13: 747-766.

    Google Scholar 

  • Van Cleve K., Viereck L.A. and Schletner R.L. 1971. Accumulation of nitrogen in alder (alnus) ecosystems near Fairbanks, Alaska. Arctic Alpine Res. 3: 101-114.

    Google Scholar 

  • Van Cleve K., Yarie J., Erickson R. and Dyrness C.T. 1993b. Nitrogen mineralization and nitrification in successional ecosystems on the Tanana River floodplain, interior Alaska. Can. J. Forest Res. 23: 970-978.

    Google Scholar 

  • Van Miegroet H., Cole D.W. and Foster N.W. 1992. Nitrogen distribution and cycling. In: Johnson D. and Lindberg S. (eds), Atmospheric deposition and forest nutrient cycling. Ecological Studies 91. Springer-Verlag, New York, pp. 178-195.

    Google Scholar 

  • Viereck L.A. 1970. Forest succession and soil development adjacent to the Chena River in interior Alaska. Arctic Alpine Res. 2: 1-26.

    Google Scholar 

  • Viereck L.A., Dyrness C.T. and Foote M.J. 1993a. An overview of the vegetation and soils of the flood-plain ecosystems of the Tanana River, interior Alaska. Can. J. Forest Res. 23: 889-898.

    Google Scholar 

  • Viereck L.A., Van Cleve K., Adams P.C. and Schletner R.E. 1993b. Climate of the Tanana River flood-plain near Fairbanks, Alaska. Can. J. Forest Res. 23: 899-913.

    Google Scholar 

  • Vitousek P.M., Fahey T., Johnson D.W. and Swift M.J. 1988. Element interactions in forest ecosystems: succession, allometry and input-output budgets. Biogeochemistry 5: 7-34.

    Google Scholar 

  • Vitousek P.M. and Farrington H. 1997. Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry 37: 63-75.

    Google Scholar 

  • Vitousek P.M. and Reiners W.A. 1975. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25: 376-381.

    Google Scholar 

  • Wagner S.W., Hanson J.D., Olness A. and Vorhees W.B. 1998. A volumetric inorganic carbon analysis system. Soil Sci. Soc. Am. J. 62: 690-693.

    Google Scholar 

  • Walker L.R. 1989. Soil nitrogen changes during primary succession on a floodplain in Alaska. USA Arctic Alpine Res. 21: 341-349.

    Google Scholar 

  • Yarie J., Van Cleve K., Dyrness C.T., Oliver L., Levison J. and Erickson R. 1993. Soil-solution chemistry in relation to forest succession on the Tanana River floodplain, interior Alaska. Can. J. Forest Res. 23: 928-940.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaye, J.P., Binkley, D. & Rhoades, C. Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession. Biogeochemistry 63, 1–22 (2003). https://doi.org/10.1023/A:1023317516458

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023317516458

Navigation