Skip to main content
Log in

Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress σ contains, in addition to elastic, viscous and thermic contributions, a plastic component σp of the form σp(x,t)=Ρ[ε, θ(x,t)](x,t). Here ∈ and θ are the fields of strain and absolute temperature, respectively, and {Ρ[·, θ]}θ>0 denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum and energy balance equations governing the space-time evolution of the material forms a system of two highly nonlinearly coupled partial differential equations involving partial derivatives of hysteretic nonlinearities at different places. It is shown that an initial-boundary value problem for this system admits a unique global strong solution which depends continuously on the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brokate, M., Sprekels, J.: Existence and optimal control of mechanical processes with hysteresis in viscous solids. IMA J. Appl. Math. 43 (1989), 219–229.

    Google Scholar 

  2. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer-Verlag, New York, 1996.

    Google Scholar 

  3. Dafermos, C. M.: Global smooth solutions to the initial-boundary value problem for the equations of one-dimensional thermoviscoelasticity. SIAM J. Math. Anal. 13 (1982), 397–408.

    Google Scholar 

  4. Dafermos, C. M., Hsiao, L.: Global smooth thermomechanical processes in one-dimensional thermoviscoelasticity. Nonlin. Anal. TMA 6 (1982), 435–454.

    Google Scholar 

  5. Ishlinskii, A. Yu.: Some applications of statistical methods to describing deformations of bodies. Izv. AN SSSR, Techn. Ser. 9 (1944), 583–590.

    Google Scholar 

  6. Krasnosel'skii, M. A., Pokrovskii, A. V.: Systems with Hysteresis. Springer-Verlag, Heidelberg, 1989; Russian edition. Nauka, Moscow, 1983.

    Google Scholar 

  7. Krejčí, P.: Hysteresis and periodic solutions of semilinear and quasilinear wave equations. Math. Z. 193 (1986), 247–264.

    Google Scholar 

  8. Krejčí, P.: A monotonicity method for solving hyperbolic problems with hysteresis. Apl. Mat. 33 (1988), 197–202.

    Google Scholar 

  9. Krejčí, P.: Hysteresis, convexity and dissipation in hyperbolic equations. Gakuto Int. Series Math. Sci. & Appl., Vol. 8. Gakkōtosho, Tokyo, 1996.

    Google Scholar 

  10. Krejčí, P., Sprekels, J.: On a system of nonlinear PDEs with temperature-dependent hysteresis in one-dimensional thermoplasticity. J. Math. Anal. Appl. 209 (1997), 25–46.

    Google Scholar 

  11. Lemaitre, J., Chaboche, J.-L.: Mechanics of solid materials. Cambridge Univ. Press, 1990; French edition. Bordas, Paris, 1985.

  12. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris, 1969.

    Google Scholar 

  13. Müller, I.: Thermodynamics. Pitman, New York, 1985.

    Google Scholar 

  14. Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z. Ang. Math. Mech. 8 (1928), 85–106.

    Google Scholar 

  15. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin-Heidelberg, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krejčí, P., Sprekels, J. Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity. Applications of Mathematics 43, 173–205 (1998). https://doi.org/10.1023/A:1023224507448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023224507448

Navigation