Skip to main content
Log in

Residual Solvent Testing: A Review of Gas-Chromatographic and Alternative Techniques

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The purpose of this brief review is to describe and discuss some of the current analytic procedures including gas-chromatographic and alternative techniques for residual solvent testing. Residual solvents, or organic volatile impurities, are a potential toxic risk for pharmaceutic products and have been a concern of manufacturers for many years. Residual solvents have had official limits in the United States as set in USP XXV and by the FDA in 1997 and have been monitored by most pharmaceutical manufacturers extensively for more than two decades in both bulk and finished products. The chief method of analysis for residual solvents is gas chromatography, which is generally considered the preferred methodology. Sample introduction techniques include both static and dynamic headspace analysis, solid-phase microextraction, and direct injection of solution containing bulk drug substance or drug product into the gas chromatograph. Also, some alternative methodologies for residual solvent testing are discussed in this review. In conclusion, gas chromatograph-based procedures will continue to dominate residual solvent testing because of its specificity for identification of the solvent, but the use of alternative sample introduction techniques into a gas chromatograph will continue to expand in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Organic volatile impurities. In The 2002 United States Pharmacopeia XXV and National Formulary XX, The United States Pharmcopeial Convention, Rockville, Maryland, 2001, pp. 1943-1945.

  2. M. A. Litchman and R. P. Upton. Head-space GLC determination of triethylamine in pharmaceuticals. J. Pharm. Sci. 62:1140-1142 (1973).

    Google Scholar 

  3. K. E. Rasmussen, S. Rasmussen, and A. Baerheim Svendsen. Quantitative determination of residual solvents in steroid hormones by means of gas-liquid chromatography and solid injection. J. Chromatogr. 71:543-544 (1972).

    Google Scholar 

  4. Harmonised Tripartite Guideline on Impurities in New Drug Substances. (Q3A), International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH), Geneva, Switzerland, 1997.

  5. G. Rousseau and P. Jeffs. International conference on harmonization impurity guidelines-the industry perspective. J. Drug Informa. 34:903-907 (2000).

    Google Scholar 

  6. International Conference on Harmonisation. Guidance on Impurities. Residual Solvents. Federal Register 62:67377-67388 (1997).

    Google Scholar 

  7. Guidance for Industry, Q3C Impurities: Residual Solvents, U.S. Food and Drug Administration, Rockville, Maryland, December 1997.

  8. K. J. Mulligan and H. McCauley. Factors that influence the determination of residual solvents in pharmaceuticals by automated static headspace sampling coupled to capillary GC-MS. J. Chromatogr. Sci. 33:49-54 (1995).

    Google Scholar 

  9. I. G. McWilliam and R. A. Dewar. Flame ionization detector for gas chromatography. Nature 181:760-765 (1958).

    Google Scholar 

  10. D. G. Westmorland and G. R. Rhodes. Analytical techniques for trace organic compounds II: Detectors for gas chromatography. Pure Appl. Chem. 61:1148-1160 (1989).

    Google Scholar 

  11. C. Wits#x03A7; and E. Doelker. Residual solvents in pharmaceutical products: acceptable limits, influences on physicochemical properties, analytical methods and documented values. Eur. J. Pharm. Biopharm. 43:215-242 (1997).

    Google Scholar 

  12. B. S. Kersten. Drug matrix effect on the determination of residual solvents in bulk pharmaceuticals by wide-bore capillary gas chromatography. J. Chromatogr. Sci. 30:115-119 (1992).

    Google Scholar 

  13. I. D. Smith and D. G. Waters. Determination of residual solvent levels in bulk pharmaceuticals by capillary gas chromatography. Analyst 116:1327-1331 (1991).

    Google Scholar 

  14. D. W. Foust and M. S. Bergen. Analysis of solvent residues in pharmaceutical bulk drugs by all-coated open tubular gas-chromatography. J. Chromatogr. 469:161-173 (1989).

    Google Scholar 

  15. Q. C. Li, K. A. Cohen, and G. Zhuang. A capillary gas chromatographic procedure for the analysis of nine common residual solvents in water-insoluble bulk pharmaceuticals. J. Chromatogr. Sci. 36:119-124 (1998).

    Google Scholar 

  16. H. Hachenberg and A. P. Schmidt. Gas Chromatographic Headspace Analysis. Heyden Press, Rheine, Germany, 1977.

    Google Scholar 

  17. J. Drozd and J. Novak. Headspace gas analysis by gas chromatography. J. Chromatogr. 165:141-165 (1979).

    Google Scholar 

  18. C. F. Poole and S. A. Schuette. Isolation and concentration techniques for capillary column gas chromatographic analysis. J. High Res. Chromatogr 6:526-549 (1983).

    Google Scholar 

  19. A. J. Nunez, L. F. Gonzlez, and J. Janak. Pre-concentration of headspace volatiles for trace organic analysis by gas chromatography. J. Chromatogr. 300:127-162 (1984).

    Google Scholar 

  20. A. G. Vitenberg. Methods of equilibrium concentration for the gas chromatographic determination of trace volatiles. J. Chromatogr. 556:1-24 (1991).

    Google Scholar 

  21. A. N. Marinchev, A. G. Vitenberg, and A. S. Bureiko. Efficiency of gas extraction in headspace analysis. J. Chromatogr. 600:251-256 (1992).

    Google Scholar 

  22. C. C. Camarasu, M. Meqei-Szuts, and G. B. Varga. Residual solvents in pharmaceutical products by GC-HS and GC-MS-SPME. J. Pharm. Biomed 18:623-638 (1998).

    Google Scholar 

  23. T. P. Wampler, W. A. Bowe, and E. J. Levy. Dynamic headspace analysis of residual volatiles in pharmaceuticals. J. Chromatogra. Sci. 23:64-67 (1985).

    Google Scholar 

  24. C. D. McAullife. GC determination of solutes by multiple phase equilibration. Chem. Tech. 1:46-51 (1971).

    Google Scholar 

  25. B. Kolb and P. Pospisil. A gas chromatographic assay for quantitative analysis of volatiles in solid materials by discontinuous gas extraction. Chromatographia 10:705-711 (1977).

    Google Scholar 

  26. B. Kolb, P. Pospisil, and M. Auer. Quantitative headspace analysis of solid samples-a classification of various sample types. Chromatographia 19:113-122 (1984).

    Google Scholar 

  27. C. B'Hymer. Static headspace gas chromatographic method for the determination of residual solvents in vigabatrin drug substance. J. Chromatogr. 438:103-107 (1988).

    Google Scholar 

  28. A. G. Vitenberg and M. I. Kostkina. Gas chromatographic head space analysis on capillary columns. J. Anal. Chem. USSR 43:253-261 (1988).

    Google Scholar 

  29. W. C. Kidd. Evaluation of the proposed automated headspace method for organic volatile impurities. Pharm. Forum 19:5063-5066 (1993).

    Google Scholar 

  30. K. J. Dennis, P. A. Josephs, and J. Dokladalova. Proposed automated headspace method for organic volatile impurities (467) and other residual solvents. Pharm. Forum 18:2964-2972 (1992).

    Google Scholar 

  31. N. Kumar and J. C. Egoville. Headspace gas chromatography method for the analysis of volatile impurities in a hormone replacement transdermal patch. J. Chromatogr. A 859:113-118 (1999).

    Google Scholar 

  32. L. Hong and H. Altorfer. A micro-sized technique for determination of organic volatile impurities in water-insoluble pharmaceuticals. Chromatographia 53:76-80 (2001).

    Google Scholar 

  33. H. Lord. and J. Pawliszyn. Evolution of solid-phase microextraction technology. J. Chromatogr. A 885:153-193 (2000).

    Google Scholar 

  34. C. L. Arthur and J. Pawliszyn. Solid-phase microextraction with thermal-desorption using fused-silica optical fibers. Anal. Chem. 62:2145-2148 (1990).

    Google Scholar 

  35. Z. Zhang. and J. Pawliszyn. Sampling volatile organic compounds using a modified solid phase microextraction device. J. High Resol. Chromatogr. 19:155-160 (1996).

    Google Scholar 

  36. C. C. Camarasu. Headspace SPME method development for the analysis of volatile polar residual solvents by GC-MS. J. Pharm. Biomed. 23:197-210 (2000).

    Google Scholar 

  37. S. A. Coran, V. Giannellini, S. Furlanetto, M. Banbagiotti-Alberti, and S. Pinznuti. Improving gas chromatographic determination of solvents in pharmaceuticals by combined use of headspace solid-phase microextraction and isotopic dilution. J. Chromatogr. A 915:209-216 (2001).

    Google Scholar 

  38. Combi PAL—multiple injection modes on a single GC system. Varian, Inc., Palo Alto, California, 2002 product literature.

  39. C. L. Arthur, L. M. Killam, K. D. Buchholz, J. Pawliszyn, and J. R. Berg. Automation and optimization of solid-phase microextraction. Anal. Chem. 64:1960-1966 (1992).

    Google Scholar 

  40. J. M. Green. A practical guide to analytical method validation. Anal. Chem. 68:305A-309A (1996).

    Google Scholar 

  41. J. Newman and C. J. Nunn. Solvent retention in organic coatings. Prog. Org. Coatings 3:221-243 (1975).

    Google Scholar 

  42. J. P. Guimbard, J. Besson, S. Beaufort, J. Pittie, and M. Gachon. Evaluation des solvant residuels. S.T.P. Pharma. Practiques 1:272-277 (1991).

    Google Scholar 

  43. J. P. Benoit, F. Courteille, and C. Thies. A physicochemical study of the morphology of progesterone-loaded poly(D,L-lactide) microspheres. Int. J. Pharm. 29:95-105 (1986).

    Google Scholar 

  44. C. Dubernet, J. C. Rouland, and J. P. Benoit. Comparative study of two ethylcellulose forms (raw material and microspheres) carried out through thermal analysis. Int. J. Pharm. 64:99-107 (1990).

    Google Scholar 

  45. P. H. List and G. Laun. Zusammenhang zwischen Losungsmittelresten und Permeabilitat von Eudragit L-Filmen. Pharm. Ind 42:399-401 (1980).

    Google Scholar 

  46. H. Weitkamp and R. Barth, Bestimmung kleiner Gehaltswerte nach dem Aufstockverfahren. In H. Weitkamp and R. Barth (eds.), Einfurungin die quantitative Infrarot-Spektrophotometrie. Georg Thieme Verlag, Stuttgart, Germany, 1976, pp. 58-67.

    Google Scholar 

  47. Z. Osawa and M. Aiba. Effect of residual solvent on photo#x00B0radation of poly(vinyl chloride). Poly. Photochem. 2:339-348 (1982).

    Google Scholar 

  48. H. W. Avdovich, M. J. Lebelle, C. Savard, and W. L. Wilson. Nuclear magnetic resonance identification of solvent residue in cocaine. Forensic Sci. Int. 49:225-235 (1991).

    Google Scholar 

  49. C. Thomasin, P. Johansen, R. Alder, R. Besmsel, G. Hottinger, H. Altorfer, A. D. Wright, G. Wehrli, H. P. Merkle, and B. Gander. A contribution to overcoming the problems of residual solvents in bio#x00B0radable microspheres prepared by coacervation. J. Pharm. Biopharm. 42:16-24 (1996).

    Google Scholar 

  50. R. J. Mumper and M. Jay. Poly(L-lactic acid) microspheres containing neutron-activatable holmium-165: a study of the physical characteristics of microspheres before and after irradiation in a nuclear reactor. Pharm. Res. 9:149-154 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clayton B'Hymer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

B'Hymer, C. Residual Solvent Testing: A Review of Gas-Chromatographic and Alternative Techniques. Pharm Res 20, 337–344 (2003). https://doi.org/10.1023/A:1022693516409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022693516409

Navigation