Skip to main content
Log in

Stochastic Local Gauss-Bonnet-Chern Theorem

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The Gauss-Bonnet-Chern theorem for compact Riemannian manifold (without boundary) is discussed here to exhibit in a clear manner the role Riemannian Brownian motion plays in various probabilistic approaches to index theorems. The method with some modifications works also for the index theorem for the Dirac operator on the bundle of spinors, see Hsu.(7)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Azencott, R. (1986). Une approche probabiliste du théorème d'Atiyah-Singer, d'après J. M. Bismut, Astérisque 133–134,7. 18.

    Google Scholar 

  2. Bismut, J. M. (1984). The Atiyah-Singer theorems; a probabilistic approach, J. of Func. Anal. 57,I, 56–99: II, 329–348.

    Google Scholar 

  3. Cycon, H. L., Groese, R. G., Kirsch, W., and Simon, B. (1987). Schödinger Operators with Applications to Quantum Mechanics and Global Geometry, (Chap. 12.), Springer-Verlag, Berlin.

    Google Scholar 

  4. Elworthy, K. D. (1988). Geometric aspects of diffusions on manifolds, in École d'Été de Probabilités de Saint-Flour, Lecture Notes in Mathematics, Vol. 1362.

  5. Getzler, E. (1986). A short proof of the local Atiyah-Singer index theorem, Topology 25, 111–117.

    Google Scholar 

  6. Gilkey, P. (1984). Invariant Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Publish or Perish, Inc., Wilmington, Delaware.

    Google Scholar 

  7. Hsu, Elton P. (1997). Brownian motion and Atiyah-Singer index theorem (to appear).

  8. Hsu, Elton P. (1996). Estimates of derivatives of the heat kernel on compact manifolds (to appear).

  9. Ikeda, N., and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, Second Edition, North-Holland and Kodansha, New York and Tokyo.

    Google Scholar 

  10. Ikeda, N., and Watanabe, S. (1987). Malliavin Calculus of Wiener functionals and its applications, in From Local Times to Global Geometry, Control and Physics, K. D. Elworthy, Pitman Research Notes in Math., Longman Scientific and Technical, Harlow, (150), pp. 132–178.

    Google Scholar 

  11. Léandre, R (1988). Sur le Théorème d'Atiyah-Singer, Prob. Th. Rel. Fields 80, 119–137.

    Google Scholar 

  12. MacKean, H. P., and Singer, I. M. (1967). Curvature and the eigenvalues of the Laplacian, J. Differential Geometry 1(1), 43–69.

    Google Scholar 

  13. Patodi, V. K. (1971). Curvature and the eigenforms of the Laplace operator, J. Differential Geometry 5, 233–249.

    Google Scholar 

  14. Pinsky, M. (1974). Multiplicative operator functionals and their asymptotic properties, in Advances in Probability, Marcel Dekker, New York, pp. 1–100.

    Google Scholar 

  15. Sheu, S.-Y. (1991). Some estimates of the transition density function of a nondegenerate diffusion Markov process, Ann. Prob. 19(2), 538–561.

    Google Scholar 

  16. Shigekawa, I., Ueki, N., and Watanabe, S. (1989). A probabilistic proof of the Gauss-Bonnet-Chern theorem for manifolds with boundary, Osaka J. Math. 26, 897–930.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, E.P. Stochastic Local Gauss-Bonnet-Chern Theorem. Journal of Theoretical Probability 10, 819–834 (1997). https://doi.org/10.1023/A:1022691430720

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022691430720

Navigation