Skip to main content
Log in

Anisotropy Spectra of the Solvent-Sensitive Fluorophore 4-Dimethylamino-4′-Cyanostilbene in the Presence of Light Quenching

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We examined the emission wavelength-dependent anisotropies of the solvent-sensitive fluorophore 4-dimethylamino-4′-cyanostilbene (DCS) under conditions of light quenching by polarized time-delayed quenching pulses. Illumination on the long-wavelength side of the emission spectrum with time-delayed light pulses resulted in a progressive decrease in the emission anisotropy as the observation wavelength increased toward the stimulating wavelength. The anisotropy changes of DCS were most wavelength dependent when spectral relaxation occurred during the excited-state lifetime. Light quenching of DCS in a low-viscosity solvent revealed no wavelength-dependent anisotropies. Control measurements using a solvent-insensitive fluorophore did not show any wavelength-dependent anisotropy with light quenching. The data for DCS can be explained by a model which allows wavelength-selective quenching of the long-wavelength emission formed by time-dependent spectral relaxation. These results indicate that polarized light quenching can be used to study systems which display multiple emissions and/or time-dependent spectral shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Weber (1952) Biochem. J. 51, 145–155.

    Google Scholar 

  2. G. Weber (1952) Biochem. J. 51, 155–167.

    Google Scholar 

  3. R. F. Steiner (Ed.) (1983) in Excited States of Biopolymers, Plenum Press, New York, pp. 117–162.

    Google Scholar 

  4. R. F. Steiner (1991) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 2. Principles, Plenum Press, New York, pp. 1–52.

    Google Scholar 

  5. R. B. Cundall and R. E. Dale (Eds.) (1983) Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum Press, New York, p. 785.

    Google Scholar 

  6. R. D. Spencer, F. B. Toldeo, B. T. Williams, and N. Yoss (1973) Clin. Chem. 19, 838–844.

    Google Scholar 

  7. E. Haber and J. C. Bennett (1962) Proc. Natl. Acad. Sci. USA 48, 1935–1942.

    Google Scholar 

  8. S. A. Levison, W. B. Dandiker and D. Murayama (1977) Env. Sci. Technol. 11, 292–297.

    Google Scholar 

  9. S. D. Stroupe (1981) Clin. Chem. 27, 1575–1579.

    Google Scholar 

  10. D. M. Jameson and T. L. Hazlett (1991) in T. G. Dewey (Ed.), Biophysical and Biochemical Aspects of Fluorescence Spectroscopy, Plenum Press, New York, pp. 105–133.

    Google Scholar 

  11. G. G. Belford, R. L. Belford and G. Weber (1972) Proc. Natl. Acad. Sci. USA 69(6), 1392–1393.

    Google Scholar 

  12. E. W. Small and I. Isenberg (1977) Biopolymers 16, 1907–1928.

    Google Scholar 

  13. T. J. Chuang and K. B. Eisenthal (1972) J. Chem. Phys. 57, 5094–5097.

    Google Scholar 

  14. M. Ehrenberg and R. Rigler (1972) Chem. Phys. Lett. 14, 539–544.

    Google Scholar 

  15. M. D. Galanin, B. P. Kirsanov and Z. A. Chizhkova (1969) Soviet Phys. JETP Lett. 9(9), 502–507.

    Google Scholar 

  16. A. N. Rubinov, V. I. Tomin and V. A. Zhivnov (1973) Opt. Spectrosc. (USSR) 35(4), 451–452.

    Google Scholar 

  17. O. P. Girin (1987) Izvest. Akad. Nauk (USSR) 42(3), 550–553.

    Google Scholar 

  18. N. G. Bakhshiev, E. S. Voropai, V. A. Gaisenok, O. P. Girin and A. M. Sarzhevskii (1981) Opt. Spectrosc. (USSR) 50(6), 614–618.

    Google Scholar 

  19. J. R. Lakowicz, I. Gryczynski, V. Bogdanov and J. Kuśba (1994) J. Phys. Chem. 98, 334–342.

    Google Scholar 

  20. I. Gryczynski, V. Bogdanov and J. R. Lakowicz (1994) Biophys. Chem. 49, 223–232.

    Google Scholar 

  21. I. Gryczynski, J. Kuśba, V. Bogdanov and J. R. Lakowicz (1994) J. Phys. Chem. 98, 8886–8895.

    Google Scholar 

  22. J. R. Lakowicz, I. Gryczynski, J. Kuśba and V. Bogdanov (1994) Photochem. Photobiol. 60, 546–562.

    Google Scholar 

  23. J. Sepiol (1990) Chem. Phys. Lett. 175(5), 419–424.

    Google Scholar 

  24. I. P. Dzugan, I. Schmidt and I. I. Aarisma (1986) Chem. Phys. Lett. 127(4), 333–342.

    Google Scholar 

  25. R. Lapouyade, K. Czeschka, W. Majenz, W. Rettig, E. Gilabert and C. Rulliere (1992) J. Phys. Chem. 96, 9643–9650.

    Google Scholar 

  26. A. Safarzadeh-Amiri (1986) Chem. Phys. Lett. 125(3), 272–278.

    Google Scholar 

  27. E. Gorlach, H. Gygax, P. Lubini and U. P. Wild (1995) Chem. Phys. 194, 185–193.

    Google Scholar 

  28. T. O. Harju, A. H. Huizer and C. A. G. O. Varma (1995) Chem. Phys. 200, 215–224.

    Google Scholar 

  29. A. Mokhtari, A. Chebira and J. Chesnoy (1990) J. Opt. Soc. Am. B 7(8), 1551–1557.

    Google Scholar 

  30. D. Wong, F. Pellegrino, R. R. Alfano and B. A. Zilinskas (1981) Photochem. Photobiol. 33, 651–662.

    Google Scholar 

  31. I. Yamazaki, M. Mimuro, T. Murao, Yamazaki, K. Yoshihara and Y. Fujita, (1984) Photochem. Photobiol. 39, 233–240.

    Google Scholar 

  32. Y. T. Mazurenko, V. V. Danilov and S. I. Vorontsova (1973) Opt. Spectrosc. (USSR) 35(1), 107–108.

    Google Scholar 

  33. I. Gryczynski, J. Kuśba, Z. Gryczynski, H. Malak and J. R. Lakowicz (1996) J. Phys. Chem. 100(24), 10135–10144.

    Google Scholar 

  34. G. Laczko, J. R. Lakowicz, I. Gryczynski, Z. Gryczynski and H. Malak (1990) Rev. Sci. Instrum. 61, 2331–2337.

    Google Scholar 

  35. J. R. Lakowicz and I. Gryczynski (1991) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 1. Techniques, Plenum Press, New York, pp. 293–355.

    Google Scholar 

  36. A. Jablonski (1960) Bull. Acad. Pol. Sci. 8, 259–264.

    Google Scholar 

  37. G. Weber (1952) Biochem. J. 51, 145–155.

    Google Scholar 

  38. J. R. Laws and L. Brand (1979) J. Phys. Chem. 83, 795–802.

    Google Scholar 

  39. A. Gafni and L. Brand (1978) Chem. Phys. Lett. 58, 346–350.

    Google Scholar 

  40. J. R. Lakowicz and A. Balter (1982) Biophys. Chem. 16, 223–240.

    Google Scholar 

  41. A. Kawski, I. Gryczynski, K. Nowaczyk, P. Bojarski, and J. Lichacz (1991) Z. Naturforsch. 46a, 1043–1048.

    Google Scholar 

  42. M. J. Cote, J. F. Kauffman, P. G. Smith, and J. D. McDonald (1989) J. Chem. Phys. 90, 2865–2873.

    Google Scholar 

  43. V. E. J. Hauser (1992) Arab. J. Sci. Eng. 17, 209–219.

    Google Scholar 

  44. J. L. Herek, S. Pedersen, L. Banares, and A. H. Zewail (1992) J. Chem. Phys. 97, 9046–9061.

    Google Scholar 

  45. J. S. Baskin, L. Banares, S. Pedersen, and A. H. Zewail (1996) J. Phys. Chem. 100, 11920–11933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gryczynski, I., Kuśba, J., Gryczynski, Z. et al. Anisotropy Spectra of the Solvent-Sensitive Fluorophore 4-Dimethylamino-4′-Cyanostilbene in the Presence of Light Quenching. Journal of Fluorescence 8, 253–261 (1998). https://doi.org/10.1023/A:1022561801704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022561801704

Navigation