Skip to main content
Log in

The Eta Invariant and the Real Connective K-Theory of the Classifying Space for Quaternion Groups

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

We express the real connective K-theory groups \(\tilde k\)o4k−1(B Q ) ofthe quaternion group Q of order ℓ = 2j ≥ 8 in terms of therepresentation theory of Q by showing \(\tilde k\)o4k−1(B Q ) = \(\tilde K\)Sp(S 4k+3Q )where τ is any fixed point free representation of Q in U(2k + 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M. F., Patodi, V. K. and I. Singer, I. M.: Spectral asymmetry and Riemannian geometry I, II, III, Math. Proc. Cambridge Philos. Soc. 77 (1975) 4–69; 78 (1975) 40–432; 9 (1976) 7–99.

    Google Scholar 

  2. Bahri, A. and Bendersky, M.: The KO theory of toric manifolds, Trans. Amer. Math. Soc. 352 (2000), 119–1202.

    Google Scholar 

  3. Bayen, D. and Bruner, R.: Real connective K-theory and the quaterion group, Trans. Amer. Math. Soc. 348 (1996), 2201–2216.

    Google Scholar 

  4. Barrera-Yanez, E. and Gilkey, P.: The eta invariant and the connective K theory of the classifying space for cyclic 2 groups, Ann. Global Anal. Geom. 17 (1999), 28–299.

    Google Scholar 

  5. Botvinnik, B. and Gilkey, P.: An analytic computation of ko 4v-1(BQ 8), Topl. Methods Nonlinear Anal. 6 (1995), 12–135.

    Google Scholar 

  6. Botvinnik, B., Gilkey, P. and Stolz, S.: The Gromov-Lawason-Rosenberg conjecture for groups with periodic cohomology, J. Differential Geom. 46 (1997), 34–405.

    Google Scholar 

  7. Bruner, R. and Greenlees, J.: The connective K theory of finite groups, preprint.

  8. Donnelly, H.: Eta invariants for G-spaces, Indiana Univ. Math. J. 27 (1978), 88–918.

    Google Scholar 

  9. Geiges, H. and Thomas, C. B.: Contact structures, equivariant spin bordism, and periodic fundamental groups, Math. Ann. 320 (2001), 58–708.

    Google Scholar 

  10. Gilkey, P.: The Geometry of Spherical Space Form Groups, World Scientific, Singapore, 1989.

    Google Scholar 

  11. Gilkey, P., Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, CRC Press, Baton Rouge, FL, 1995.

    Google Scholar 

  12. Gilkey, P. and Karoubi, M.: K theory for spherical space forms, Topology Appl. 25 (1987), 17–184.

    Google Scholar 

  13. Gilkey, P., Leahy, J. and Park, J. H.: Spectral Geometry, Riemannian Submersions, and the Gromov-Lawson Conjecture Chapman & Hall, 1999.

  14. Greenlees, J.: Equivariant forms of connective K theory, Topology 38 (1999), 107–1092.

    Google Scholar 

  15. Martino, J. and Priddy, S. B.: Classification of BG for groups with dihedral or quaternion Sylow 2 subgroup, J. Pure Appl. Algebra 73 (1991), 1–21.

    Google Scholar 

  16. Mitchell, S. and Priddy, S.: Symmetric product spectra and splitting of classifying spaces, Amer. J. Math. 106 (1984), 291-232.

    Google Scholar 

  17. Stolz, S.: Splitting certain MSpin-module spectra, Topology 33 (1994), 15–180.

    Google Scholar 

  18. Wolf, J. A.: Spaces of Constant Sectional Curvature, Publish or Perish Press, 1985.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera-Yanez, E., Gilkey, P.B. The Eta Invariant and the Real Connective K-Theory of the Classifying Space for Quaternion Groups. Annals of Global Analysis and Geometry 23, 173–188 (2003). https://doi.org/10.1023/A:1022488431610

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022488431610

Navigation