Skip to main content
Log in

On the Use of Global Kinetics Models for the Investigation of Energy Deposition and Chemistry in RF Argon–Oxygen Plasmas Working in the Torr Regime

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A global plasma model is used to investigate the chemistry and energy deposition in 13.56 MHz radio-frequency capacitively coupled oxygen–argon discharges under conditions usually used for the deposition of tin oxide films. These models are based on the solution of a stationary electron Boltzmann equation coupled to species balance equations including the vibrational kinetics equations of O2. The results obtained showed that vibrational non equilibrium of O2-molecule is not significant. The dissociation degree of O2 was found to be around a few percents and the discharge was often moderately electronegative even for small O2 contents in the feed gas. The ionization and energy dissipation mechanisms are mainly governed by the collisional processes involving O2 for an oxygen feed gas composition greater than 20%. Results also showed that the predicted densities of the charged species and the electronegative character of the discharge are strongly linked to the assumption made on the homogeneity of the power deposition. On the contrary, the predicted density of O-atom is not sensitive to this assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Hellegouarc'h, R. Planade, J. Amouroux, and F. Arefi-Khonsari, Sensor and Actuators B: Chemical 73, 27–34 (2001).

    Google Scholar 

  2. F. Arefi-Khonsari, F. Hellegouarc'h, and J. Amouroux, J. Vac. Sci. Technol. A 16, 2240–2244 (1998).

    Google Scholar 

  3. M. A. Lieberman, IEEE Trans. Plasma. Sci. 16, 638–644 (1988).

    Google Scholar 

  4. M. A. Lieberman, IEEE Trans. Plasma. Sci. 17, 338–341 (1989).

    Google Scholar 

  5. G. R. Misium, A. J. Lichtenberg, and M. A. Lieberman, J. Vac. Sci. Technol. A 7, 1007–1013 (1989).

    Google Scholar 

  6. B. P. Wood, M. A. Lieberman, and A. J. Lichtenberg, IEEE Trans. Plasma. Sci. 23, 89–95 (1995).

    Google Scholar 

  7. A. J. Lichtenberg, I. G. Kouznetsov, Y. T. Lee, M. A. Lieberman, I. D. Kaganovich, and L. D. Tsendin, Plasma Sources Sci. Technol. 6, 437–449 (1997).

    Google Scholar 

  8. Z. Wang, A. J. Lichtenberg, and R. H. Cohen, Plasma Sources Sci. Technol. 8, 151–161 (1999).

    Google Scholar 

  9. A. J. Lichtenberg, M. A. Lieberman, I. G. Kouznetsov, and T. H. Chung, Plasma Sources Sci. Technol. 9, 45–56 (2000).

    Google Scholar 

  10. M. S. Barnes, T. J. Colter, and M. E. Elta, J. Appl. Phys. 61, 81–88 (1987).

    Google Scholar 

  11. J. P. Boeuf, Phys. Rev. A 36, 2782–2792 (1987).

    Google Scholar 

  12. E. Gogolides and H. H. Sawin, J. Appl. Phys. 72, 3971–3987 (1992).

    Google Scholar 

  13. J. D. P. Passhier and W. J. Goodheer, J. Appl. Phys. 74, 3744–3751 (1993).

    Google Scholar 

  14. O. Leroy, G. Gousset, L. L. Alves, J. Perrin, and J. Jolly, Plasma Sources Sci. Technol. 7, 348–358 (1998).

    Google Scholar 

  15. K. Bera, B. Farouk, and Y. H. Lee, Plasma Sources Sci. Technol. 10, 211–225 (2001).

    Google Scholar 

  16. T. J. Sommerer and M. J. Kushner, J. Appl. Phys. 71, 1654(1992).

    Google Scholar 

  17. T. J. Sommerer and M. J. Kushner, J. Vac. Sci. Technol. B 10, 2179(1992).

    Google Scholar 

  18. A. Fiala, L. C. Pitchford, and J. P. Boeuf, Phys. Ref. E 49, 5607–5622 (1994).

    Google Scholar 

  19. V. Vahedi, G. DiPeso, C. K. Birdsall, M. A. Lieberman, and T. G. Rognlien, Plasma Sources Sci. Technol. 2, 261–272 (1993).

    Google Scholar 

  20. D. P. Lymberopoulos and D. J. Economou, J. Phys. D. Appl. Phys. 28, 727–737 (1995).

    Google Scholar 

  21. E. Kawamura, C. K. Birdstall, and V. Vahedi, Plasma Sources Sci. Technol. 9, 413–428 (2000).

    Google Scholar 

  22. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharge for Material Pro-cessing, John Wiley & Son, New York, 1994.

    Google Scholar 

  23. V. Agodyak and R. B. Piejak, J. Vac. Sci. Technol. A 8, 3833–3837 (1990).

    Google Scholar 

  24. A. Ricard, L. Saint Onge, H. Malvos, A. Gicquel, J. Hubert, and M. Moisan, J. Phys. III, Fr. 5, 1269(1995).

    Google Scholar 

  25. K. Tabayashi and K. Shobatake, J. Chem. Phys. 88, 835(1988).

    Google Scholar 

  26. B. Eliasson and U. Kogelschatz, KLR 86–11 C Report of Brown Boveri Forschungszen-trum, Baden, Switzerland, 1986.

  27. M. J. Pinheiro, G. Gousset, A. Granier, and C. M. Ferreira, Plasma Sources Sci. Technol. 7, 524–536 (1998).

    Google Scholar 

  28. R. C. Millikan and D. R. White, J. Chem. Phys. 39, 3209–3213 (1963).

    Google Scholar 

  29. A. Laganà, A. Riganelli, G. Ochoa De Aspuru, E. Garcia, and M. T. Martinez, in Molecular Physics and Hypersonic Flows, NATO ASI Series C Vol. 482 (M. Capitelli, ed.), Kluwer Academic Publishers, Boston-London, 1996, pp. 35–52.

    Google Scholar 

  30. A. V. Phelps, ftp://jila.colorado.edu/collision_data/electron.txt

  31. Y. Itikawa and A. Ichimura, J. Phys. Chem. Ref. Data 19, 637–651 (1990).

    Google Scholar 

  32. I. A. Kossyi, A. Yu Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207–220 (1992).

    Google Scholar 

  33. S. D. Rockwood, Phys. Rev. A 8, 2348–2358 (1973).

    Google Scholar 

  34. C. M. Ferreira, in Microwave Discharges: Fundamentals and Applications (C. M. Ferreira and M. Moisan, eds.), Plenum Press, New York and London, 1992, pp. 313–338.

    Google Scholar 

  35. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, The Molecular Theory of Gases and Liquids, New York, J. Wiley & Sons, 1954.

    Google Scholar 

  36. M. Vialle, M. Touzeau, G. Gousset, and C. M. Ferreira, J. Phys. D: Appl. Phys. 24, 301–308 (1991).

    Google Scholar 

  37. K. Hassouni, A. Gicquel, M. Capitelli, and J. Lourreiro, Plasma Sources Sci. Technol. 8, 494–512 (1999).

    Google Scholar 

  38. A. Ricard, Ann. Chim. Fr. 8, 303–318 (1983).

    Google Scholar 

  39. M. Capitelli and M. Dilonardo, Chem. Phys. 30, 95–107 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morscheidt, W., Hassouni, K., Bauduin, N. et al. On the Use of Global Kinetics Models for the Investigation of Energy Deposition and Chemistry in RF Argon–Oxygen Plasmas Working in the Torr Regime. Plasma Chemistry and Plasma Processing 23, 117–140 (2003). https://doi.org/10.1023/A:1022472904111

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022472904111

Navigation