Skip to main content
Log in

Regional Membrane Phospholipid Alterations in Alzheimer's Disease

Neurochemical Research Aims and scope Submit manuscript

Abstract

Regional levels of membrane phospholipids [phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylcholine (PC)] were measured in the brain of Alzheimer's disease (AD) and control subjects. The levels of PE-derived and PI-derived total fatty acids were significantly decreased in the hippocampus of AD subjects. Here significant decreases were found in PE-derived stearic, oleic and arachidonic and docosahexaenoic acids, and in PI-derived oleic and arachidonic acids. In the inferior parietal lobule of AD subjects, significant decreases were found only in PE and those decreases were contributed by stearic, oleic and arachidonic acids. In the superior and middle temporal gyri and cerebellum of AD subjects, no significant decreases were found in PC-, PE- and PI-derived fatty acids. The decrease of PE and PI, which are rich in oxidizable arachidonic and docosahexaenoic acids, but not of PC, which contains lesser amounts of these fatty acids, suggests a role for oxidative stress in the increased degradation of brain phospholipids in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Hazel, J. R., and Williams, E. E. 1990. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog. Lipid. Res. 29:167-227.

    Google Scholar 

  2. Dhillon, H. S., Donaldson, D., Dempsey, R. J., and Prasad, M. R. 1993. Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J. Neurotrauma. 11:405-415.

    Google Scholar 

  3. Suzuki, K. 1981. Chemistry and metabolism of brain lipids. Pages 355-370, inSiegel, G. J., Albers, R. W., Agranoff, B. W., and Katzman, R. (eds.), Basic neurochemistry, 3rd ed., Little, Brown, Boston.

    Google Scholar 

  4. Mason, R. P., Estermyer, J. D., Kelly, J. F., and Mason, P. E. 1996. Alzheimer's disease amyloid β-peptide 25–35 is localized in the membrane hydrocarbon core: X-ray diffraction analysis. Biochem. Biophys. Res. Commn. 222:78-82.

    Google Scholar 

  5. Barany, M., Chang, Y. C., Arus, C., Rustan, T., and Frey, W. H. Jr. 1985. Increased glycerol-3-phosphorylcholine in post-mortem Alzheimer's brain [letter]. Lancet. 1:517.

    Google Scholar 

  6. Blusztajn, J. K., Gonzalez-Coviella, I., Logue, M., Growdon, J. H., and Wurtman, R. J. 1990. Levels of phospholipid catabolic intermediates, glycerophosphocholine and glycerophosphoethanolamine, are elevated in brains of Alzheimer's disease but not of Down's syndrome patients. Brain. Res. 536:240-244.

    Google Scholar 

  7. Miatto, O., Gonzalez, R. G., Buonanno, F., and Growdon, J. H. 1986. In vitro 31P NMR spectroscopy detects altered phospholipid metabolism in Alzheimer's disease. Can. J. Neurol. Sci. 13:535-539.

    Google Scholar 

  8. Nitsch, R. M., Blusztajn, J. K., Pittas, A. G., Slack, B. E., Growdon, J. H., and Wurtman, R. J. 1992. Evidence for a membrane defect in Alzheimer's disease brain. Proc. Natl. Acad. Sci. USA. 89:1671-1675.

    Google Scholar 

  9. Pettegrew, J. W., Moossy, J., Withers, G., McKeag, D., and Panchalingam, K. 1988. 31P nuclear magnetic resonance study of the brain in Alzheimer's disease. J. Neuropathol. Exp. Neurol. 47:235-248.

    Google Scholar 

  10. Pettegrew, J. W., Panchalingam, K., Moossy, J., Martinez, J., Rao, G., and Boller, F. 1988. Correlation of phosphorus-31 magnetic resonance spectroscopy and morphologic findings in Alzheimer's disease. Arch. Neurol. 45:1093-1096.

    Google Scholar 

  11. Smith, C. D., Gallenstein, L. G., Layton, W. J., Kryscio, R. J., and Markesbery, W. R. 1993. 31P magnetic resonance spectroscopy in Alzheimer's disease and Pick's disease. Neurobiol. Aging. 14:85-92.

    Google Scholar 

  12. Svennerholm, L., and Gottfries, C. G. 1994. Membrane lipids, selectively diminished in Alzheimer brains. suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J. Neurochem. 62:1039-1047.

    Google Scholar 

  13. Abe, K., Kogure, K., Yamamoto, H., Imazawa, M., and Miyamoto, K. 1987. Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J. Neurochem. 48:503-509.

    Google Scholar 

  14. Bazan, N. G., Jr. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta. 218:1-10.

    Google Scholar 

  15. Dhillon, H. S., Carbary, T., Dose, J., Dempsey, R. J., and Prasad, M. R. 1995. Activation of phosphatidylinositol bisphosphate signal transduction pathway after experimental brain injury: A lipid study. Brain Res. 698:100-106.

    Google Scholar 

  16. Katsura, K., Rodriguez de Turco, E. B., Folbergrova, J., Bazan, N. G., and Siesjo, B. K. 1993. Coupling among energy failure, loss of ion homeostasis, and phospholipase A2and C activation during ischemia. J. Neurochem. 61:1677-1684.

    Google Scholar 

  17. Lovell, M. A., Ehmann, W. D., Butler, S. M., and Markesbery, W. R. 1995. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease. Neurology. 45:1594-1601.

    Google Scholar 

  18. Hall, E. D., McCall, J. M., and Means, E. D. 1994. Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv. Pharmacol. 28:221-268.

    Google Scholar 

  19. Halliwell, B., and Gutteridge, J. M. C. 1989. Free radicals in biology and medicine, 2nd ed., Claredon Press, Oxford.

    Google Scholar 

  20. Halliwell, B. 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609-1623.

    Google Scholar 

  21. Rice-Evans, C., and Burdon, R. 1993. Free radical-lipid interactions and their pathological consequences. Prog. Lipid Res. 32:71-110.

    Google Scholar 

  22. Behl, C., Davis, J. B., Lesley, R., and Schubert, D. 1994. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77:817-827.

    Google Scholar 

  23. Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Landum, R. M., Cheng, M. S., Wu, J. F., and Floyd, R. A. 1991. Reversal of agerelated increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-alphaphenyInitrone. Proc. Natl. Acad. Sci. USA. 88:3633-3636.

    Google Scholar 

  24. Hensley, K., Carney, J. M., Mattson, M. P., Aksenova, M., Harris, M., Wu, J. F., Floyd, R. A., and Butterfield, D. A. 1994. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer's disease. Proc. Natl. Acad. Sci. USA. 91:3270-3274.

    Google Scholar 

  25. Yan, S. D., Chen, X., Schmidt, A. M., Brett, J., Godman, G., Zou, Y. S., Scott, C. W., Caputo, C., Frappier, T., Smith, M. A., Perry, G., Yen, S. H., and Stern, D. 1994. Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA. 91:7787-7791.

    Google Scholar 

  26. Blass, J. P., and Gibson, G. E. 1991. The role of oxidative abnormalities in the pathophysiology of Alzheimer's disease. Rev. Neurol. (Paris). 147:513-525.

    Google Scholar 

  27. Ehmann, W. D., Markesbery, W. R., Alauddin, M., and Hossain, T. I. M. 1986. Brain trace elements in Alzheimer's disease. Neurotoxicology. 7:197-206.

    Google Scholar 

  28. Thompson, C. M., Markesbery, W. R., Ehmann, W. D., Mao, Y.-X., and Vance, D. E. 1988. Regional brain trace-element studies in Alzheimer's disease. Neurotoxicology. 9:1-8.

    Google Scholar 

  29. McKhann, G., Drachman, D., Folstein, M., Price, D., and Stadlan, E. M. 1984. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRA work group under the auspices of the Department of Health Services Task Force on Alzheimer's disease. Neurology. 34:939-944.

    Google Scholar 

  30. Khachaturian, Z. S. 1985. Diagnosis of Alzheimer's disease (Conference report). Arch. Neurol. 42:1097-1105.

    Google Scholar 

  31. Mirra, S. S., Hart, M. N., and Terry, R. D. 1993. Making the diagnosis of Alzheimer's disease. A primer for practicing pathologists. Arch. Pathol. Lab. Med. 117:132-144.

    Google Scholar 

  32. Wells, K., Farooqui, A. A., Liss, L., and Horrocks, L. A. 1995. Neural membrane phospholipids in Alzheimer's disease. Neurochem. Res. 20:1329-1333.

    Google Scholar 

  33. Crino, P. B., Ullman, M. D., Vogt, B. A., Bird, E. D., and Volicer, L. 1989. Brain gangliosides in dementia of the Alzheimer type. Arch. Neurol. 46:398-401.

    Google Scholar 

  34. Kracun, I., Kalanj, S., Cosovic, C., and Talan-Hranilovic, J. 1990. Brain gangliosides in Alzheimer's disease. J. Hirnforsch. 31:789-793.

    Google Scholar 

  35. Ikeda, M., Yoshida, S., Busto, R., Santiso, M., and Ginsberg, M. D. 1986. Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J. Neurochem. 47:123-132.

    Google Scholar 

  36. Prasad, M. R., Dhillon, H. S., Carbary, T., Dempsey, R. J., and Scheff, S. W. 1994. Enhanced phosphodiestric breakdown of phosphatidylinositol bisphosphate after experimental brain injury. J. Neurochem. 63:773-776.

    Google Scholar 

  37. Mayer, R. J., and Marshall, L. A. 1993. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and-nonselective enzymes. FASEB J. 7:339-348.

    Google Scholar 

  38. Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., Aksenova, M., Gabbita, S. P., Wu, J. F., Carney, J. M., Lovell, M., Markesbery, W. R., and Butterfield, D. A. 1995. Brain regional correspondence between Alzheimer's disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65:2146-2156.

    Google Scholar 

  39. Mark, R. J., Blanc, E. M., and Mattson, M. P. 1996. Amyloid β-peptide and oxidative cellular injury in Alzheimer's disease. Mol. Neuro. 12:211-224.

    Google Scholar 

  40. Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., and Gershfeld, N. L. 1995. Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer's disease brain. Brain Res. 698:223-226.

    Google Scholar 

  41. Goodman, Y., and Mattson, M. P. 1994. Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp. Neurol. 128:1-12.

    Google Scholar 

  42. Harris, M. E., Hensley, K., Butterfield, D. A., Leedle, R. E., and Carney, J. M. 1995. Direct evidence of oxidative injury produced by the Alzheimer's β-amyloid peptide (1–40) in cultured hippocampal neurons. Exp. Neurol. 131:193-202.

    Google Scholar 

  43. Butterfield, D. A., Hensley, K., Harris, M., Mattson, M., and Carney, J. 1994. β-amyloid peptide free radical fragments initiate synaptosomal lipoperoxidation in a sequence-specific fashion: implications to Alzheimer's disease. Biochem. Biophys. Res. Commn. 200:710-715.

    Google Scholar 

  44. Hensley, K., Aksenova, M., Carney, J. M., Harris, M., and Butterfield, D. A. 1995. Amyloid β-peptide spin trapping. I. Peptide enzyme toxicity is related to free radical spin trap reactivity. Neuroreport. 6:489-492.

    Google Scholar 

  45. Hensley, K., Aksenova, M., Carney, J. M., Harris, M., and Butterfield, D. A. 1995. Amyloid β-peptide spin trapping. II. Evidence for decomposition of the PBN spin adduct. Neuroreport. 6:493-496.

    Google Scholar 

  46. Behl, C., Davis, J., Cole, G. M., and Schubert, D. 1992. Vitamin E protects nerve cells from amyloid β protein toxicity. Biochem. Biophys. Res. Commun. 186:944-950.

    Google Scholar 

  47. Dyrks, T., Dyrks, E., Hartmann, T., Masters, C., and Beyreuther, K. 1992. Amyloidogenicity of β A4 and β A4-bearing amyloid protein precursor fragments by metal-catalyzed oxidation. J. Biol. Chem. 267:18210-18217.

    Google Scholar 

  48. Balazs, L., and Leon, M. 1994. Evidence of an oxidative challenge in the Alzheimer's brain. Neurochem. Res. 19:1131-1137.

    Google Scholar 

  49. Volicer, L., and Crino, P. B. 1990. Involvement of free radicals in dementia of the Alzheimer type: a hypothesis. Neurobiol. Aging. 11:567-571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, M.R., Lovell, M.A., Yatin, M. et al. Regional Membrane Phospholipid Alterations in Alzheimer's Disease. Neurochem Res 23, 81–88 (1998). https://doi.org/10.1023/A:1022457605436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022457605436

Navigation