Skip to main content
Log in

Chronic Lithium Treatment Decreases Brain Phospholipase A2 Activity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chronic lithium administration decreases the turnover of arachidonic acid (AA) in several brain phospholipids. This suggests that lithium may attenuate phospholipase A2 (PLA2) activity in brain. We now report effects of chronic lithium treatment on PLA2 activity in postnuclear supernatant from rat brain: Enzyme activity was determined by two assay methods, radiometric and fluorometric, and measured the release of the fatty acid on the second acyl position (sn2) from choline and ethanolamine phospholipids. PLA2 activity in brain postnuclear supernatant from rats chronically treated with lithium in the diet was significantly decreased (20–50%) when compared with controls. In vehicle or lithium-treated rats, PLA2 activity was not significantly augmented or attenuated by the addition of calcium chelators, divalent cations or LiCl supplementation (1.0 mM) to postnuclear supernatant. These results suggest that a major therapeutic effect of lithium is to attenuate brain PLA2 activity involved in signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Emilien, G., Maloteaux, J. M., Seghers, A., and Charles, G. 1995. Lithium therapy in the treatment of manic-depressive illness. Present status and future perspectives. A critical review. Arch. Int. Pharmacodyn. 330:251–278.

    PubMed  Google Scholar 

  2. Manji, H. K., Potter, W. Z., and Lenox, R. H. 1995. Signal transduction pathways. Molecular targets for lithium's actions. Arch. Gen. Psychiatry 52:531–543.

    PubMed  Google Scholar 

  3. Mork, A., Geisler, A., and Hollund, P. 1992. Effects of lithium on second messenger systems in the brain. Pharmacol. Toxicol. 71:4–17.

    PubMed  Google Scholar 

  4. Jope, R. S., and Williams, M. B. 1994. Lithium and signal transduction systems. Biochem. Pharmacol. 47:429–441.

    PubMed  Google Scholar 

  5. Hallcher, L. M., and Sherman, W. R. 1980. The effects of lithium ion and other agents on the activity of myo-inositol-1–phosphatase from bovine brain. J. Biol. Chem. 255:10896–10901.

    PubMed  Google Scholar 

  6. Sherman, W. R., Gish, B. G., Honchar, M. P., and Munsell, L. Y. 1989. Effects of lithium on phosphoinositide metabolism in vivo. Fedn. Proc. 45:2639–2646.

    Google Scholar 

  7. Horrobin, D. F. 1978. Lithium as a regulator of prostaglandin synthesis. Relevance of manic depressive illness. Pages 243–246, in Johnson, F. N. and Johnson, S., (eds.), Lithium in Medical Practice, University Park Press, Baltimore.

    Google Scholar 

  8. Schroder, T., Lempinen, M., Nordling, S., and Kinnunen, P. K. J. 1981. Chlorpromazine treatment of experimental acute fulminant pancreatitis in pigs. Eur. Surg. Res. 13:143–151.

    PubMed  Google Scholar 

  9. Lee, R. E. 1974. The influence of psychotropic drugs on prostaglandin biosynthesis. Prostaglandins 5:63–68.

    PubMed  Google Scholar 

  10. Krupp, P., and Wesp, M. 1975. Inhibition of prostaglandin synthetase by psychotropic drugs. Experientia 31:330–331.

    PubMed  Google Scholar 

  11. Mtabaji, P., Manku, M. S., and Horrobin, D. F. 1977. Actions of tricyclic antidepressant clomipramine on responses to pressor agents. Interactions with prostaglandin E2. Prostaglandins 14:273–281.

    PubMed  Google Scholar 

  12. Bekemeier, H., Giessler, A. J., and Vogel, E. 1977. Influence of MAO-inhibitors, neuroleptics, morphine, mescaline, divascan, aconitine, and pyrogenes on prostaglandin-biosynthesis. Pharmacol. Res. Commun. 9:587–598.

    PubMed  Google Scholar 

  13. Hong, S. L., Carty, T., and Deykin, D. 1980. Tranylcypromine and 15–hydroperoxy-arachidonate affect arachidonic acid release in addition to inhibition of prostaglandin synthesis in calf aortic endothelial cells. J. Biol. Chem. 255:9538–9540.

    PubMed  Google Scholar 

  14. Lieb, J., Karmali, R., and Horrobin, D. 1983. Elevated levels of prostaglandin E2 and thromboxane B2 in depression. Prostaglandins Leukotrienes Med. 10:361–367.

    Google Scholar 

  15. Aarsman, A. J., Roosenboom, C. F. P., van Geffen, G. E. W., and van den Bosch, H. 1985. Some aspects of rat platelet and serum phospholipase A2 activities. Biochim. Biophys. Acta 837:288–295.

    PubMed  Google Scholar 

  16. Chang, M. C. J., Grange, E., Rabin, O., Bell, J. M., Allen, D. D., and Rapoport, S. I. 1996. Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci. Lett. 220:171–174.

    PubMed  Google Scholar 

  17. Jones, C. R., Arai, T., Bell, J. M., and Rapoport, S. I. 1996. Preferential in vivo incorporation of [3H]arachidonic acid from blood into rat synaptosomal fractions before and after cholinergic stimulation. J. Neurochem. 67:822–829.

    PubMed  Google Scholar 

  18. Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–257.

    Article  PubMed  Google Scholar 

  19. Chang, M. C., Berkery, D., Laychock, S. G., and Schuel, H. 1991. Reduction of the fertilizing capacity of sea archin sperm by cannabinoids derived from marihuana. III. Activation of phospholipase A2 in homogenate of sea urchin sperm by delta-9–tetrahydrocannabinol. Biochem. Pharmacol. 42:899–904.

    Article  PubMed  Google Scholar 

  20. Bayburt, T., Yu, B.-Z., Street, I., Ghomashchi, F., Laliberte, F., Perrier, H., Wang, Z., Homan, R., Jain, M. K., and Gelb 1995. Continuous, vesicle-based fluorimetric assays of 14–and 85–kDa phospholipase A2. Anal. Biochem. 232:7–23.

    Article  PubMed  Google Scholar 

  21. Kim, Y. S., and Padilla, G. M. 1978. Determination of free Ca ion concentrations with an ion-selective electrode in the presence of chealating agents in comparison with calculated values. Anal. Biochem. 89:521–528.

    Article  PubMed  Google Scholar 

  22. Pete, M. J., Wu, D. W., and Exton, J. H. 1996. Subcellular fractions of bovine brain degrade phosphatidylcholine by sequential deacylation of the sn-1 and sn-2 positions. Biochim. Biophys. Acta 1299:325–332.

    PubMed  Google Scholar 

  23. Dawson, E., Parfitt, E., Roberts, Q., Daniels, J., Lim, L., Sham, P., Nöthen, M., Propping, P., Lanczik, M., Maier, W., Reuner, U., Weissenbach, J., Gill, M., Powell, J., McGuffin, P., Owen, M., and Craddock, N. 1995. Linkage studies of bipolar disorder in the region of the Darier's disease gene on chromosome 12q23–24.1. Am. J. Med. (Neuropsychiat. Gen.) 60:94–102.

    Google Scholar 

  24. Hibbeln, J. R., Palmer, J. W., and Davis, J. M. 1989. Are disturbances in lipid-protein interactions by phospholipase A2 a predisposing factor in affective illness? Biol. Psychiatry 25:945–961.

    Article  PubMed  Google Scholar 

  25. Fujimori, Y., Murakami, M., Kim, D. K., Hara, S., Takayama, Y., Kudo, I., and Inoue, K. 1992. Immunochemical detection of arachidonyl-preferential phospholipase A2. J. Biochem. (Tokyo) 111:54–60.

    Google Scholar 

  26. Matsuzawa, A., Murakami, M., Atsumi, G., Imai, K., Prados, P., Inoue, K., and Kudo, I. 1996. Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem. J. 318:701–709.

    PubMed  Google Scholar 

  27. Diaz-Arrastia, R., Ma, L., and Jones, S. 1996. Calcium-independent cytosolic phospholipase A2 (cicPLA2), is the major PLA2 isoform in vertebrate brain and in expressed in the limbic system. Trans. Am. Soc. Neurosci. 22:620.

    Google Scholar 

  28. Clemens, J. A., Stephenson, D. T., Smalstig, E. B., Roberts, E. F., Johnstone, E. M., Sharp, J. D., Little, S. P., and Kramer, R. M. 1996. Reactive glial express cytosolic phospholipase A2 after transient global forebrain ischemia in the rat. Stroke 27:527–535.

    PubMed  Google Scholar 

  29. Berridge, M. J., Downes, C. P., and Hanley, M. R. 1982. Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochem. J. 206:587–595.

    PubMed  Google Scholar 

  30. Berridge, M. J., Downes, C. P., and Hanley, M. R. 1989. Neural and developmental actions of lithium: a unifying hypothesis. Cell 59:411–419.

    Article  PubMed  Google Scholar 

  31. Brami, B. A., Leli, U., and Hauser, G. 1991. Influence of lithium on second messenger accumulation in NG 185–15 cells. Biochem. Biophys. Res. Commun. 174:606–612.

    Article  PubMed  Google Scholar 

  32. Nakamura, S., Asaoka, Y., Yoshida, K., Sasaki, Y., and Nishizuka, Y. 1993. Protein kinase C for cell signaling: A possible link between phospholipases. Adv. Second Messenger Phosphoprotein Res. 28:171–178.

    PubMed  Google Scholar 

  33. Nakamura, S., and Nishizuka, Y. 1994. Lipid mediators and protein kinase C activation for the intracellular signaling network. J. Biochem. 115:1029–1034.

    PubMed  Google Scholar 

  34. Exton, J. H., Taylor, S. J., Augert, G., and Bocckino, S. B. 1991. Cell signaling through phospholipid breakdown. Mol. Cell. Biochem. 104:81–86.

    Article  PubMed  Google Scholar 

  35. Trzeciak, H. I., Kalacinski, W., Malecki, A., and Kokot, D. 1995. Effects of neuroleptics on phospholipase A2 activity in the brains of rats. Eur. Arch. Psychiatry Clin. Neurosci. 245:179–182.

    PubMed  Google Scholar 

  36. Gattaz, W. F., Kollisch, M., Thuren, T., Virtanen, J. A., and Kinnunen, P. K. J. 1987. Increased plasma phospholipase A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol. Psychiatry 22:421–426.

    Article  PubMed  Google Scholar 

  37. Gattaz, W. F., Hubner, C. K., Nevalainen, T., Thuren, T., and Kinnunen, P. K. J. 1990. Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol. Psychiatry 28:495–501.

    PubMed  Google Scholar 

  38. Gattaz, W. F., Steudle, A., and Maras, A. 1995. Increased platelet phospholipase A2 activity in schizophrenia. Schizophrenia Res. 16:1–6.

    Article  Google Scholar 

  39. Naponen, M., Sanfilipo, M., Samanich, K., Ryer, H., Ko, G., Angrist, B., Wolkin, A., Duncan, E., and Rotrosen, J. 1993. Elevated PLA2 activity in schizophrenics and other psychiatric patients. Biol Psychiatry 34:641–649.

    Article  PubMed  Google Scholar 

  40. Asaoka, Y., Nakamura, S., Yoshida, K., and Nishizuka, Y. 1992. Protein kinase C, calcium and phospholipid degradation. Trends Biochem. Sci. 17:414–417.

    Article  PubMed  Google Scholar 

  41. Manji, H. K., Etcheberrigaray, R., Chen, G., and Olds, J. L. 1993. Lithium decreases membrane-associated protein kinase C in hippocampus: selectivity for the α isozyme. J. Neurochem. 61:2303–2309.

    PubMed  Google Scholar 

  42. Mork, A., and Geisler, A. 1989. Effects of GTP on hormone-stimulated adenylate cyclase activity in cerebral cortex, striatum, and hippocampus from rats treated chronically with lithium. Biol. Psychiat. 26:279–288.

    Article  PubMed  Google Scholar 

  43. Avissar, S., Schreiber, G., Danon, A., and Belmaker, R. H. 1988. Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex. Nature 331:440–442.

    Article  PubMed  Google Scholar 

  44. Axelrod, J., Burch, R. M., and Jelsema, C. L. 1988. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: Arachidonic acid and its metabolites as second messengers. Trends Neurosci. 11:117–123.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, M.C.J., Jones, C.R. Chronic Lithium Treatment Decreases Brain Phospholipase A2 Activity. Neurochem Res 23, 887–892 (1998). https://doi.org/10.1023/A:1022415113421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022415113421

Navigation