Skip to main content
Log in

Modes of Action of Allelochemical Alkaloids: Interaction with Neuroreceptors, DNA, and Other Molecular Targets

Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Several alkaloids are toxic to insects and vertebrates and, in addition, can inhibit the growth of bacteria and plant seedlings. In vitro assays were established to elucidate their modes of action and to understand their allelochemical properties. Basic molecular targets studied, present in all cells, included DNA intercalation, protein biosynthesis, and membrane stability. The degree of DNA intercalation was positively correlated with inhibition of DNA polymerase I, reverse transcriptase, and translation at the molecular level and with toxicity against insects and vertebrates at an organismic level. Inhibition of protein biosynthesis was positively correlated with animal toxicity. Molecular targets studied, present only in animals, included neuroreceptors (alpha1, alpha2, serotonin, muscarinic, and nicotinic acetylcholine receptors) and enzymes related to acetylcholine (acetylcholine esterase and choline acetyltransferase). The degree of binding of alkaloids to adrenergic, serotonin, and muscarinic acetylcholine receptors was positively correlated in G-protein-coupled receptors. Receptor binding and toxicity was correlated in insects. The biochemical properties of alkaloids are discussed. It is postulated that their structures were shaped in a process termed “evolutionary molecular modeling” to interact with a single and, more often, with several molecular targets at the same time. Many alkaloids are compounds with a broad activity spectrum that apparently have evolved as “multipurpose” defense compounds. The evolution of allelochemicals affecting more than one target could be a strategy to counteract adaptations by specialists and to help fight off different groups of enemies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  • Bernays, E. A., and Chapman, R. F. 1994. Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York, 312 pp.

    Google Scholar 

  • Blum, M. S. 1981. Chemical Defenses in Arthropods. Academic Press, New York, 562 pp.

    Google Scholar 

  • BopprÉ, M. 1990. Lepidoptera and pyrrolizidine alkaloids: Exemplification of complexity in chemical ecology. J. Chem. Ecol. 16:1-18.

    Google Scholar 

  • Burres, N. S., Frigo, A., Rasmussen, R. R., and McAlpine, J. B. 1992. A colorimetric microassay for the detection of agents that interact with DNA. J. Nat. Prod. 55:1582-1587.

    Google Scholar 

  • Detzel, A., and Wink, M. 1993. Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8-18.

    Google Scholar 

  • Dictionary of Natural Compounds. 1996. CD-ROM version 5:1. Chapman & Hall, Lond.

    Google Scholar 

  • Eisner, T., and Meinwald, J. 1995. The chemistry of sexual selection. Proc. Natl. Acad. Sci. U.S.A. 92:50-55.

    Google Scholar 

  • El-Shazly, A., Sarg, T., Ateya, A., Abdel Aziz, E., El-Dahmy, S., Witte, L., and Wink, M. 1996a. Pyrrolizidine and tetrahydroisoquinoline alkaloids from Echium humile. Phytochemistry 42:225-230.

    Google Scholar 

  • El-Shazly, A., Sarg, T., Ateya, A., Abdel Aziz, E., El-Dahmy, S., Witte, L., and Wink, M. 1996b. Pyrrolizidine alkaloids from Echium setosum and Echium vulgare. J. Nat. Prod. 59:310-313.

    Google Scholar 

  • El-Shazly, A., Sarg, T., Ateya, A., Abdel Aziz, E., Witte, L., and Wink, M. 1996c. Pyrrolizidine alkaloids of Cynoglossum officinale and Cynoglossum amabile (Family Boraginaceae). Biochem. Syst. Ecol. 24:415-421.

    Google Scholar 

  • El-Shazly, A., Sarg, T., Witte, L., and Wink, M. 1996d. Pyrrolizidine alkaloids from Cynoglossum creticum. Phytochemistry 42:1217-1221.

    Google Scholar 

  • El-Shazly, A., Tei, A., Witte, L., El-Domiaty, M., and Wink, M. 1997. Tropane alkaloids of Hyoscyamus boveanus, H. desertorum, H. muticus and H. albus from Egypt. Z. Naturforsch. 52c:729-739.

    Google Scholar 

  • Friedman, J., and Waller, G. 1983. Caffeine hazards and their prevention in germination of seeds of coffee. J. Chem. Ecol. 9:1099-1105.

    Google Scholar 

  • Harborne, J. B. 1993. Introduction to Ecological Biochemistry, 4th ed. Academic Press, London, 318 pp.

    Google Scholar 

  • Hartmann, T. 1992. Alkaloids: Biochemistry, physiology and chemical ecology by example of the pyrrolizidine alkaloids, pp. 65-76, in K. Takai (ed.). Frontiers and New Horizons in Amino Acid Research. Elsevier, Amsterdam.

    Google Scholar 

  • Hartmann, T., and Witte, L. 1995. Chemistry, biology and chemoecology of the pyrrolizidine alkaloids, pp. 155-233, in S. W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives, Vol. 9. Pergamon, Oxford.

    Google Scholar 

  • Holzinger, F., and Wink, M. 1996. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): Role of an amino acid substitution in the ouabain binding site of Na+, K+-ATPase. J. Chem. Ecol. 22:1921-1937.

    Google Scholar 

  • Holzinger, F., Frick, C., and Wink, M. 1992. Molecular basis for the insensitivity of the monarch (Danaus plexippus) to cardiac glycosides. FEBS 314:477-480.

    Google Scholar 

  • Keeler, R., and Dekker, 1992. Toxicology of plant and fungal compounds. J. Nat. Prod. 55:1696-1697.

    Google Scholar 

  • Krey, A. K., and Hahn, F. E. 1969. Berberine: Complex with DNA. Science 166:755-757.

    Google Scholar 

  • Latz-BrÜning, B. 1994. Molekulare Wirkmechanismen von Alkaloiden. PhD thesis. University of Heidelberg, Heidelberg, Germany.

    Google Scholar 

  • Levin, D. A. 1976. The chemical defenses of plants to pathogens and herbivores. Annu. Rev. Ecol. Syst. 7:121-159.

    Google Scholar 

  • Maiti, M., and Chaudhuri, K. 1981. Interaction of berberine chloride with naturally occuring deoxyribonucleic acids. Indian J. Biochem. Biophys. 18:245-250.

    Google Scholar 

  • Martindale. 1993. Martindale—The Extra Pharmacopoeia, 30th ed. Pharmaceutical Press, London.

    Google Scholar 

  • Meinwald, J. 1990. Alkaloids and isoprenoids as defensive and signalling agents among insects. Pure Appl. Chem. 62:1325-1328.

    Google Scholar 

  • MERCK INDEX. 1996. 12 ed. Merck & Co., Whitehouse Station, New Jersey.

  • Mothes, K. 1955. Physiology of alkaloids. Annu. Rev. Plant Physiol. 6:393-433.

    Google Scholar 

  • Nandi, R., and Maiti, M. 1985. Binding of sanguinarine to deoxyribonucleic acids of differing base composition. Biochem. Pharmacol. 34:321-324.

    Google Scholar 

  • Owens, M. J., Morgan, W. N., Plott, S. J., and Nwmeroff, C. B. 1997. Neurotransmitter receptor and transporter binding profile of antidepressants and their metabolites. J. Pharmcol. Exp. Ther. 288:1305-1322.

    Google Scholar 

  • Rice, E. L. 1984. Allelopathy. Academic Press, Orlando, Florida.

    Google Scholar 

  • Rizvi, S. J. H., and Rizvi, V. 1992. Allelopathy. Basic and Applied Aspects. Chapman and Hall, London.

    Google Scholar 

  • Roberts, M. F., and Wink, M. 1998. Alkaloids: Biochemistry, Ecology and Medicinal Applications. Plenum Press, New York.

    Google Scholar 

  • Robinson, T. 1981. The Biochemistry of Alkaloids. Springer, Berlin.

    Google Scholar 

  • Roddick, J. G., Rijnenberg, A. L., and Osman, S. F. 1988. Synergistic interaction between potato glycoalkaloid α-solanine and α-chaconine in relation to destabilization of cell membranes: Ecological implications. J. Chem. Ecol. 14:889-903.

    Google Scholar 

  • Rothschild, M., Aplin, R. T., Cockrum, P. A., Edgar, J. A., Fairweather, P., and Lees, R. 1979. Pyrrolizidine alkaloids in arctiid moths (Lepidoptera) with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biol. J. Linn. Soc. 12:305-326.

    Google Scholar 

  • Sambrook, J., Fritsch, E. F., and Maniatis, T. M. 1989. Molecular Cloning. A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Schmeller, T. 1995. Interaktionen von Alkaloiden mit Neurotransmitter-Rezeptoren. PhD thesis. University of Heidelberg, Heidelberg, Germany.

    Google Scholar 

  • Schmeller, T., Sauerwein, M., Sporer, F., and Wink, M. 1994. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors. J. Nat. Prod. 57:1316-1319.

    Google Scholar 

  • Schmeller, T., Sporer, F., Sauerwein, M., and Wink, M. 1995. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors. Pharmazie 50:493-495.

    Google Scholar 

  • Schmeller, T., El-Shazly, A., and Wink, M. 1997a. Allelochemical activities of pyrrolizidine alkaloids: Interactions with neuroreceptors and acetylcholine related enzymes. J. Chem. Ecol. 23:399-416.

    Google Scholar 

  • Schmeller, T., Latz-BrÜning, B., and Wink, M. 1997b. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44:257-266.

    Google Scholar 

  • Schneider, D. 1992. 100 years of pheromone research. Naturwissenschaften 6:241-250.

    Google Scholar 

  • Swain, T. 1977. Secondary compounds as protective agents. Annu. Rev. Plant Physiol. 28:479-501.

    Google Scholar 

  • Swofford, D. L. 1993. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.1. Illinois Natural History Survey.

  • Verpoorte, R. 1998. Antimicrobially active alkaloids, pp. 397-433, in M. F. Roberts, and M. Wink (eds.). Alkaloids: Biochemistry, Ecology and Medicinal Applications. Plenum Press, New York.

    Google Scholar 

  • Waller, G. R. 1987. Allelochemicals: Role in Agriculture and Forestry, Vol. 330. Washington, DC: American Chemical Society.

    Google Scholar 

  • Wink, M. 1987. Chemical ecology of quinolizidine alkaloids, pp. 525-533, in G. R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series, Vol. 330. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Wink, M. 1988. Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 75:225-233.

    Google Scholar 

  • Wink, M. 1992. The role of quinolizidine alkaloids in plant-insect interactions, pp. 131-166, in E. A. Bernays (ed.). Insect-Plant Interactions, Vol. 4. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wink, M. 1993. Allelochemical properties or the raison d'être of alkaloids, pp. 1-118, in G. A. Cordell (ed.). The Alkaloids, Vol. 43. Academic Press, San Diego.

    Google Scholar 

  • Wink, M. 1998. Interference of alkaloids with neuroreceptors and ion channels. In Atta-Ur-Rahman (ed.). Studies in Natural Products Chemistry. In press.

  • Wink, M., and Latz-BrÜning, B. 1995. Phytotoxic properties of alkaloids and other natural products, pp. 117-126, in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes, and Applications. ACS Symposium Series, Vo. 582. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Wink, M., and Schneider, D. 1990. Fate of plant-derived secondary metabolites in three moth species (Syntomis mogadorensis, Syntomeida epilais, and Creatonotos transiens). J. Comp. Physiol. B 160:389-400.

    Google Scholar 

  • Wink, M., and Twardowski, T. 1992. Allelochemical properties of alkaloids. Effects on plants, bacteria and protein biosynthesis, pp. 129-150, in S. J. H. Rizvi and V. Rizvi (eds.). Allelopathy. Basic and Applied Aspects. Chapman & Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wink, M., Schmeller, T. & Latz-Brüning, B. Modes of Action of Allelochemical Alkaloids: Interaction with Neuroreceptors, DNA, and Other Molecular Targets. J Chem Ecol 24, 1881–1937 (1998). https://doi.org/10.1023/A:1022315802264

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022315802264

Navigation