Skip to main content
Log in

Synthesis, Structure, and Reactivity of Iron-Sulfur Species in Zeolites

Catalysis Letters Aims and scope Submit manuscript

Abstract

Previous studies have shown that a variety of iron-oxo species, including nanoclusters and dimers, can be formed within the pore structure of ZSM-5 and other porous materials. We report that these species can readily be sulfided by exposure to hydrogen sulfide at 623 K when formed in ZSM-5, mordenite, and MCM-41. The iron-sulfur entities produced have been characterized by XPS and EXAFS spectroscopy. Iron is in the oxidation state +2 and the nearest neighbor iron-sulfur interatomic distance is ∼2.25 Å, which is close to that in iron(II) sulfide. Sulfidation appears to be at least 90% complete. In ZSM-5 the same iron-sulfur species, which contains isolated iron atoms or very small clusters, is formed irrespective of whether the iron was introduced by aqueous exchange or chemical vapor deposition. The sulfided ZSM-5 material is found to be weakly active for the hydration of acrylonitrile to acrylamide in tetrahydrofuran solution at 338 K, with the best materials achieving about 0.5 turnovers per iron species per day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Marturano, L. Drozdova, A. Kogelbauer and R. Prins, J. Catal. 192 (2000) 236.

    Google Scholar 

  2. M. Stockenhuber, M. J. Hudson and R. W. Joyner, J. Phys. Chem. B104 (2000) 3370.

    Google Scholar 

  3. R. W. Joyner and M. Stockenhuber, J. Phys. Chem. B103 (1999) 5963.

    Google Scholar 

  4. M. Stockenhuber, R. W. Joyner and G. S. Paine, unpublished results.

  5. See e.g. S. P. Cramer, in: X-ray Absorption, Principles, Applications and Techniques of EXAFS, eds. D. C. Koningsberger and R. Prins (Wiley, New York, 1988), and references therein.

    Google Scholar 

  6. C. R. Kissinger, E. T. Adman, L. C. Sieker and L. H. Jensen, J. Am. Chem. Soc. 110 (1988) 8721.

    Google Scholar 

  7. H. Yamada and M. Kobayashi, Biosci. Biotech. Biochem. 60 (1996) 1391.

    Google Scholar 

  8. M. S. Wainwright, in: Catalysis of Organic Reactions, ed. R. E. Malz Jr. (Marcel Dekker, New York, 1996), p. 213.

    Google Scholar 

  9. H.-Y. Chen and W. M. H. Sachtler, Catal. Today 42 (1998) 73.

    Google Scholar 

  10. R. W. Joyner, K.J Martin and P. Meehan, J. Phys. C (Solid State Phys.) 20 (1987) 4005.

    Google Scholar 

  11. A. A. Battiston, J. H. Bitter and D. C. Koningsberger, Catal. Lett. 66 (2000) 75.

    Google Scholar 

  12. M. R. Antonio, B. A. Averill, I. Moura, J. J. G. Moura, W. H. Orme-Johnson, B. Teo and A. V. Xavier, J. Biolog. Chem. 257 (1982) 6646.

    Google Scholar 

  13. N. Okazaki, S. Osada and A. Tada, Appl. Surf. Sci. 121/122 (1997) 396.

    Google Scholar 

  14. B. W. L. Southward, G. J. Hutchings, R. W. Joyner and R. A. Stewart, Catal. Lett. 68 (2000) 75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joyner, R.W., Stockenhuber, M. & Tkachenko, O.P. Synthesis, Structure, and Reactivity of Iron-Sulfur Species in Zeolites. Catalysis Letters 85, 193–197 (2003). https://doi.org/10.1023/A:1022193730075

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022193730075

Navigation