Skip to main content
Log in

Synthetic Peptide VKGFY and Its Cyclic Analog Stimulate Macrophage Bactericidal Activity through Non-Opioid β-Endorphin Receptors

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

We synthesized linear and cyclic pentapeptides corresponding to the sequence 369-373 of human immunoglobulin G heavy chain—VKGFY (referred to as pentarphin and cyclopentarphin, respectively). The effect of pentarphin and cyclopentarphin on phagocytosis of Salmonella typhimurium virulent 415 strain bacteria by mouse peritoneal macrophages in vitro was studied. Control experiments showed that macrophages actively captured these bacteria, but did not digest them: the captured microbes were viable and continued to proliferate inside the phagocytes; within 12 h all macrophage monolayer was destroyed (incomplete phagocytosis). If 1 nM pentarphin or cyclopentarphin was added to the cultivation medium, macrophage bactericidal activity was significantly increased and they digested all captured microorganisms within 6 h (complete phagocytosis). To study the receptor binding properties of pentarphin and cyclopentarphin we prepared 125I-labeled pentarphin (179 Ci/mmol specific activity). The binding of 125I-labeled pentarphin to mouse peritoneal macrophages was highaffinity (K d = 3.6 ± 0.3 nM) and saturable. Studies on binding specificity revealed that this binding was insensitive to naloxone and [Met5]enkephalin, but completely inhibited by unlabeled cyclopentarphin (K i = 2.6 ± 0.3 nM), immunorphin (K i = 3.2 ± 0.3 nM), and β-endorphin (K i = 2.8 ± 0.2 nM). Thus, the effects of pentarphin and cyclopentarphin on macrophages are mediated by naloxone-insensitive receptors common for pentarphin, cyclopentarphin, immunorphin, and β-endorphin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Najiar, V. A., and Nashioka, K. (1970) Nature, 228, 672-673.

    Google Scholar 

  2. Herman, Z. S., Stachura, Z., Opielka, L., Siemion, I. Z., and Nawrocha, E. (1981) Experientia, 37, 76-77.

    Google Scholar 

  3. Herman, Z. S., Stachura, Z., Kraemifski, T., Plech, A., Siemion, I. Z., and Nawrocha, E. (1983) Ann. N. Y. Acad. Sci., 419, 156-163.

    Google Scholar 

  4. Val'dman, A. V., Bondarenko, N. A., Kamysheva, V. A., Kozlovskaia, M. M., and Kalikhevich, V. N. (1982) Byul. Eksp. Biol. Med., 93, 57-60.

    Google Scholar 

  5. Julliard, J. H., Shibasaki, T., Ling, N., and Guilemin, R. (1980) Science, 208, 183-185.

    Google Scholar 

  6. Houck, J. C., Kimbull, C., Chang, C., Pedigo, N. W., and Yamamura, H. J. (1980) Science, 207, 78-80.

    Google Scholar 

  7. Zav'yalov, V. P., Zaitseva, O. R., Navolotskaya, E. V., Abramov, V. M., Volodina, E. Yu., and Mitin, Y. V. (1996) Immunol. Lett., 49, 21-26.

    Google Scholar 

  8. Navolotskaya, E. V., Malkova, N. V., Lepikhova, T. N., Krasnova, S. B., Zargarova, T. A., Zav'yalov, V. P., and Lipkin, V. M. (2001) Bioorg. Chem. (Moscow), 27, 359-363.

    Google Scholar 

  9. Navolotskaya, E. V., Zargarova, T. A., Malkova, N. V., Lepikhova, T. N., Zav'yalov, V. P., and Lipkin, V. M. (2001) Peptides, 22, 2009-2013.

    Google Scholar 

  10. Navolotskaya, E. V., Malkova, N. V., Zargarova, T. A., Krasnova, S. B., and Lipkin, V. M. (2002) Biochemistry (Moscow), 67, 357-363.

    Google Scholar 

  11. Navolotskaya, E. V., Zargarova, T. A., Malkova, N. V., Krasnova, S. B., Zav'yalov, V. P., and Lipkin, V. M. (2002) Biochem. Biophys. Res. Commun., 292, 799-804.

    Google Scholar 

  12. Gershkovitch, A. A., and Kibirev, V. K. (1992) Chemical Peptide Synthesis [in Russian], Naukova Dumka, Kiev, pp. 95-283.

    Google Scholar 

  13. Schnolzer, M., Alewood, P., Jones, A., Alewood, D., and Kent, S. B. H. (1992) Int. J. Peptide Protein Res., 40, 180-193.

    Google Scholar 

  14. Nakagawa, S. H., and Kaiser, E. T. (1983) J. Org. Chem., 48, 678-685.

    Google Scholar 

  15. Uchitel, I. Ya. (1978) Macrophages in the Immunity [in Russian], Meditsina, Moscow, pp. 168-180.

    Google Scholar 

  16. Navolotskaya, E. V. (1994) Structure_functional studies of human α2-interferon, interleukin 2 and immunoglobulin G using synthetic peptides: Doctoral dissertation [in Russian], Institute of Immunology, Moscow.

    Google Scholar 

  17. Salacinski, P. R. P., Lean, C. M., Sykes, J. E. C., Climent-Jones, V. V., and Lowry, P. J. (1981) Analyt. Biochem., 117, 136-146.

    Google Scholar 

  18. Chang, K.-J., Jacobs, S., and Cuatrecasas, P. (1975) Biochim. Biophys. Acta, 406, 294-303.

    Google Scholar 

  19. Chang, Y. C., and Prusoff, W. H. (1973) Biochem. Pharmacol., 22, 3099-3108.

    Google Scholar 

  20. Prishchepov, E. D., Erin, A. N., Perelygin, V. V., and Vorob'ev, A. A. (1984) J. Microbiol. Epidemiol. Immunobiol. (Moscow), 6, 3-9.

    Google Scholar 

  21. Bromberg, Y., and Pick, E. (1981) Cell. Immunol., 61, 90-103.

    Google Scholar 

  22. Lew, P. D. (1989) Eur. J. Clin. Invest., 19, 338-346.

    Google Scholar 

  23. Stendahl, O., Krause, K. H., Kricher, J., Jerstrom, P., Theler, J. M., Clark, R. A., Carpentier, J. L., and Leu, D. P. (1994) Science, 265, 1439-1441.

    Google Scholar 

  24. Theler, J. M., Lew, D. P., Jaconi, M. E., Krause, K. H., Wollheim, C. B., and Schlegel, W. (1995) Blood, 85, 2194-2201.

    Google Scholar 

  25. Clapham, D. (1995) Cell, 80, 259-268.

    Google Scholar 

  26. Helberg, C., Molony, L., Zheng, L., and Andersson, T. (1996) Biochem. J., 317, 403-409.

    Google Scholar 

  27. Berridge, M. (1997) J. Physiol., 499, 291-306.

    Google Scholar 

  28. Malik, Z. A., Denning, G. M., and Kusner, D. J. (2000) J. Exp. Med., 191(2), 287-302.

    Google Scholar 

  29. Gemza, D., Seitz, M., Kramer, W., Grimm, W., Till, G., and Resch, K. (1979) Exp. Cell. Res., 118, 55-62.

    Google Scholar 

  30. Pick, E., and Keisari, Y. (1981) Cell. Immunol., 59, 301-308.

    Google Scholar 

  31. Weidemann, M. J., Peskar, B. A., Wrogemann, K., Rietschel, E. T., Staudinder, H., and Fisher, H. (1978) FEBS Lett., 89, 136-140.

    Google Scholar 

  32. Leu, P. D., and Stassel, T. P. (1981) J. Clin. Invest., 67, 1-9.

    Google Scholar 

  33. Wong, P. Y. K., and Cheung, W. Y. (1979) Biochem. Biophys. Res. Commun., 90, 473-480.

    Google Scholar 

  34. Welsh, M. J., Dedman, J. R., Brinkley, B. R., and Means, A. R. (1979) J. Cell. Biol., 81, 624-634.

    Google Scholar 

  35. Navolotskaya, E. V., Zargarova, T. A., Malkova, N. V., Krasnova, S. B., Zav'yalov, V. P., and Lipkin, V. M. (2002) Peptides, 23, 1115-1119.

    Google Scholar 

  36. Li, C. H. (1982) Cell, 31, 504-505.

    Google Scholar 

  37. Korpela, T., Navolotskaya, E. V., Zargarova, T. A., and Zav'yalov, V. P. (2002) Patent F120020121AO. Finland. Pub. Date 23.01.2002.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navolotskaya, E.V., Kolobov, A.A., Kampe-Nemm, E.A. et al. Synthetic Peptide VKGFY and Its Cyclic Analog Stimulate Macrophage Bactericidal Activity through Non-Opioid β-Endorphin Receptors. Biochemistry (Moscow) 68, 34–41 (2003). https://doi.org/10.1023/A:1022137216874

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022137216874

Navigation