Skip to main content
Log in

Markov Processes with Equal Capacities

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let X and \(\hat X\) be transient standard Markov processes in weak duality with respect to a σ-finite measure m. Let (Y, Ŷ, μ) be a second “dual pair” with the same state space E as (X, \(\hat X\), m). Let CapX and CapY be the 0-order capacities associated with (X, \(\hat X\), m) and (Y, Ŷ, μ), and let V and \(\hat V\) denote the potential kernels for Y and Ŷ. Assume that singletons are polar with respect to both X and Y, and that semipolar sets are of capacity zero for both dual pairs. We show that if CapX(B)=CapY(B) for every Borel subset of E then there is a strictly increasing continuous additive functional D=(D t) t≥0 of (X, \(\hat X\), m) such that

$$U_D (x,dy) + \hat U_D (x,dy) = V(x,dy) + \hat V(x,dy)$$

with the exception of a capacity-zero set of x's. Here U D (resp. Û D) is the potential kernel of the time-changed process \(X_{D^{ - 1} (t)}\) (resp. \(\hat X_{D^{ - 1} (t)} )\), t≥0. In particular, if both X and Y are symmetric processes, then the equality of the capacities CapX and CapY implies that X and Y are time changes of one another. This derivation rests on a generalization of a formula of Choquet concerning the “differentiation” of capacities. In the symmetric case, our main result extends a theorem of Glover et al.(23)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Albeverio, S., Karwowski, W., Röckner, M., and Streit, L. (1985). Capacity, Green's functions and Schrödinger operators. In Infinite-Dimensional Analysis and Stochastic Processes, Pitman, London, pp. 197–215.

    Google Scholar 

  2. Blumenthal, R. M., Getoor, R. K., and McKean, H. P. (1962). Markov processes with identical hitting distributions. Illinois J. Math. 6, 402–420.

    Google Scholar 

  3. Blumenthal, R. M., Getoor, R. K., and McKean, H. P. (1963). A supplement to “Markov processes with identical hitting distributions.” Illinois J. Math. 7, 540–542.

    Google Scholar 

  4. Blumenthal, R. M., and Getoor, R. K. (1968). Markov Processes and Potential Theory, Academic Press, New York.

    Google Scholar 

  5. Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier Grenoble 5, 131–295.

    Google Scholar 

  6. Dellacherie, C., and Meyer, P.-A. (1975). Probabilités et Potentiel A, Ch. I–IV, Hermann, Paris.

    Google Scholar 

  7. Dynkin, E. B. (1985). An application of flows to time shift and time reversal in stochastic processes. Trans. Amer. Math. Soc. 287, 613–619.

    Google Scholar 

  8. Fitzsimmons, P. J. (1986). Markov processes with identical hitting probabilities. Math. Zeit. 192, 547–554.

    Google Scholar 

  9. Fitzsimmons, P. J. (1987). On the identification of Markov processes by the distribution of hitting times. In Seminar on Stochastic Processes, 1986, Birkhäuser, Boston, pp. 15–19.

    Google Scholar 

  10. Fitzsimmons, P. J., and Maisonneuve, B. (1986). Excessive measures and Markov processes with random birth and death. Prob. Th. Rel. Fields 72, 319–336.

    Google Scholar 

  11. Fitzsimmons, P. J. (1988). On a connection between Kuznetsov processes and quasi-processes. In Seminar on Stochastic Processes, 1987, Birkhäuser, Boston, pp. 123–133.

    Google Scholar 

  12. Fitzsimmons, P. J. (1989). Markov processes and non-symmetric Dirichlet forms without regularity. J. Funct. Anal. 85, 287–306.

    Google Scholar 

  13. Fitzsimmons, P. J., Getoor, R. K., and Sharpe, M. J. (1990). The Blumenthal—Getoor-McKean theorem revisited. In Seminar on Stochastic Processes, 1989, Birkhäuser, Boston, pp. 35–57.

    Google Scholar 

  14. Fitzsimmons, P. J., and Getoor, R. K. (1996). Smooth measures and continuous additive functionals of right Markov processes. In Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds.), Ito's Stochastic Calculus and Probability Theory, Springer-Verlag, Tokyo, pp. 31–49.

    Google Scholar 

  15. Fukushima, M., Ōshima, Y., and Takeda, M. (1994). Dirichlet Forms and Markov Processes, De Gruyter, Berlin-New York.

    Google Scholar 

  16. Getoor, R. K. (1984). Capacity theory and weak duality. In Seminar on Stochastic Processes, 1983, Birkhäuser, Boston, pp. 97–130.

    Google Scholar 

  17. Getoor, R. K., and Sharpe, M. J. (1984). Naturality, standardness, and weak duality for Markov processes. Z. Warsch. verw. Geb. 67, 1–62.

    Google Scholar 

  18. Getoor, R. K. and Glover, J. (1987). Constructing Markov processes with random times of birth and death. In Seminar on Stochastic Processes, 1986, Birkhäuser, Boston, pp. 35–69.

    Google Scholar 

  19. Getoor, R. K., and Steffens, J. (1987). The energy functional, balayage, and capacity. Ann. Inst. Henri Poincaré 23, 321–357.

    Google Scholar 

  20. Getoor, R. K. (1990). Excessive Measures, Birkhäuser, Boston.

    Google Scholar 

  21. Glover, J. (1983). Markov processes with identical hitting probabilities. Trans. Amer. Math. Soc. 275, 131–141.

    Google Scholar 

  22. Glover, J. (1983). Identifying Markov processes up to time change. In Seminar on Stochastic Processes, 1982, Birkhäuser, Boston, pp. 171–194.

    Google Scholar 

  23. Glover, J., Hansen, W., and Rao, M. (1988). Capacities of symmetric Markov processes. In Seminar on Stochastic Processes, 1987, Birkhäuser, Boston, pp. 159–170.

    Google Scholar 

  24. Glover, J., and Rao, M. (1988). Symmetrizations of Markov processes. J. Theor. Prob. 1, 305–325.

    Google Scholar 

  25. Hunt, G. A. (1960). Markov chains and Martin boundaries. Illinois J. Math. 4, 313–340.

    Google Scholar 

  26. Kuznetsov, S. E. (1973). Construction of Markov processes with random times of birth and death. Teor. Veroyatnost. i Primenen, 18, 596–601. (English translation: Theory Probab. Appl. 18, 571–575.)

    Google Scholar 

  27. Le Jan, Y. (1982). Quasicontinuous functions associated with a Hunt process. Proc. Amer. Math. Soc. 86, 133–138.

    Google Scholar 

  28. Le Jan, Y. (1983). Quasicontinuous functions and Hunt processes. J. Math Soc Japan 35, 37–42.

    Google Scholar 

  29. Ma, Z.-M., and Röckner, M. (1992). Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer-Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  30. Mitro, J. B. (1979). Dual Markov functionals: applications of a useful auxiliary process. Z. Wahrsch. verw. Geb. 48, 97–114.

    Google Scholar 

  31. Nagasawa, M. (1964). Time reversion of Markov processes. Nagoya Math. J. 24, 177–204.

    Google Scholar 

  32. Sharpe, M. J. (1988). General Theory of Markov Processes, Academic Press, San Diego.

    Google Scholar 

  33. Silverstein, M. (1974). Symmetric Markov Processes, Lecture Notes in Math. Vol. 426, Springer-Verlag, Berlin.

    Google Scholar 

  34. Walsh, J. B. (1972). Markov processes and their functionals in duality. Z. Warsch. verw. Geb. 24, 229–246.

    Google Scholar 

  35. Weil, M.(1971). Quasi-processes et énergie. In Séminaire de Probabilités V, Lecture Notes in Math. Springer-Verlag, Berlin, 191, pp. 347–361.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzsimmons, P.J. Markov Processes with Equal Capacities. Journal of Theoretical Probability 12, 271–292 (1999). https://doi.org/10.1023/A:1021713114477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021713114477

Navigation