Skip to main content
Log in

Evidence of mid-Holocene climate instability from variations in carbon burial in Seneca Lake, New York

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The amounts and types of carbon delivered to the sediments Seneca Lake, New York, have varied since the middle Holocene. Concentrations of CaCO3 first fluctuate between 14 and 6% around 7 ka before decreasing erratically until about 5 ka and then remain 2% in younger sediments. Because the amount of calcite that precipitates in hard-water lakes is related to summertime thermal stratification, the carbonate fluctuations suggest that cyclic strengthening and weakening of seasonality at intervals of about three centuries accompanied the end of the Holocene Hypsithermal in northeast North America. Organic C/total N values record short, decade-long intervals of enhanced delivery of land-plant material during episodes of wetter climate that are independent of the temperature variations. Higher organic δ13C values indicate that recent fertilization of lake waters from soil disturbance and land-derived runoff has increased aquatic productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley R.B., Mayewski P.A., Sowers R., Stuiver M., Taylor K.T., Clark K.C. et al. 1997. Holocene climatic instability: A prominent widespread event 8200 yrs ago. Geology 25: 483-486.

    Google Scholar 

  • Anderson W.T., Mullins H.T. and Ito E. 1997. Stable isotope record from Seneca Lake, New York: evidence for a cold paleoclimate following the Younger Dryas. Geology 25: 135-138.

    Google Scholar 

  • Bernasconi S.M., Barbieri A. and Simona M. 1997. Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnol. Oceanogr. 42: 1755-1765.

    Google Scholar 

  • Brenner M., Whitmore T.J., Curtis J.H., Hodell D.A. and Schelske C.L. 1999. Stable isotope (δ 13C and δ 15N) signatures of sedimented organic matter as indicators of historic lake trophic state. J. Paleolim. 22: 205-221.

    Google Scholar 

  • Brown P.A., Kennett J.P. and Ingram B.L. 1999. Marine evidence for episodic Holocene megafloods in North America, northern Gulf of Mexico. Paleoceanography 14: 498-510.

    Google Scholar 

  • Brown S.L., Bierman P.R., Lini A. and Southon J. 2000. 10,000 yr record of extreme hydrologic events. Geology 28: 335-338.

    Google Scholar 

  • Cronin T.M. 1999. Principles of Paleoclimatology. Columbia Unisoils, versity Press, New York, USA.

    Google Scholar 

  • Cronin T., Willard D., Karisen A., Ishman S., Verardo S., McGeehin J. et al. 2000. Climatic variability in the eastern United States over the past millennium from Chesapeake Bay sediments. Geology 28: 3-6.

    Google Scholar 

  • Dean W.E., Ahlbrandt T.S., Anderson R.Y. and Bradbury J.P. 1996. Regional aridity in North America during the middle Holocene. The Holocene 6: 145-155.

    Google Scholar 

  • Deevey E.S. and Flint R.F. 1957. Postglacial hypsithermal interval. Science 125: 182-184.

    Google Scholar 

  • Dwyer T.R., Mullins H.T. and Good S.C. 1996. Paleoclimatic implications of Holocene lake-level fluctuations, Owasco Lake, New York. Geology 24: 519-522.

    Google Scholar 

  • Ely L.A., Enzel Y., Baker V.R. and Cayan D.R. 1993. A 5000-year record of extreme floods and climate change in the southwestern United States. Science 262: 410-412.

    Google Scholar 

  • Haskell B.J., Engstrom D.R. and Fritz S.C. 1996. Late Quaternary paleohydrology in the North American Great Plains inferred from the geochemistry of endogenic carbonate and fossilos lake-tracodes from Devils Lake, North Dakota, USA. Palaeoclimatol. Palaeoecol. 124: 179-193.

    Google Scholar 

  • Hassan K.M., Swinehart J.B. and Spalding R.F. 1997. Evidence for Holocene environmental change from C/N ratios, and δ 13C and δ 15N values in Swan Lake sediments, western Sand Hills, Nebraska. J. Paleolim. 18: 121-130.

    Google Scholar 

  • Hodell D.A. and Schelske C.L. 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 43: 200-214.

    Google Scholar 

  • Hodell D.A., Schelske C.L., Fahnenstiel G.L. and Robins L.L. 1998. Biologically induced calcite and its isotopic composition in Lake Ontario. Limnol. Oceanogr. 43: 187-199.

    Google Scholar 

  • Hollander D.J. and MacKenzie J.A. 1991. Co control on carbon-2 proisotope fractionation during aqueous photosynthesis. A paleo-pCO2 barometer. Geology 19: 929-932.

    Google Scholar 

  • Kaushal S. and Binford M.W. 1999. Relationship between C:N ratios of lake sediments, organic matter sources, and historical deforestation of Lake Pleasant, Massachusetts, USA. J. Paleolim. 22: 439-442.

    Google Scholar 

  • Keeley J.E. and Sandquist D.R. 1992. Carbon: freshwater plants. Plant Cell Env. 15: 1021-1035.

    Google Scholar 

  • Kelts K. and Talbot M. 1990. Lacustrine carbonates as geochemical archives of environmental change and biotic / abiotic interactions. In: Tilzer M.M. and Serruya C. (eds), Large Lakes: Ecological Structure and Function. Springer-Verlag, New York, USA, pp. 288-315.

    Google Scholar 

  • Krishnamurthy R.V., Syrup K.A., Baskaran M. and Long A. 1995. Late glacial climate record of Midwestern United States from the hydrogen isotope ratio of lake organic matter. Science 269: 1565-1567.

    Google Scholar 

  • Meese D.A., Gow A.J., Grootes P., Mayewski P.A., Ram M., Stuiver M. et al. 1994. The accumulation record from the GISP2 core as an indicator of climate change throughout the Holocene. Science 266: 1680-1682.

    Google Scholar 

  • Meyers P.A. 1994. Preservation of source identification of sedi-mentary organic matter during and after deposition. Chem. Geol. 144: 289-302.

    Google Scholar 

  • Michel R.L. and Kraemer T.F. 1995. Use of isotopic data to estimate water residence times of the Finger Lakes, New York. J. Hydrol. 164: 1-18.

    Google Scholar 

  • Müller G. and Gastner M. 1971. The 'karbonate bomb', a simple device for determination of the carbonate content in sediment, Unisoils, and other materials. Neues Jahrb. Mineral. 10: 446-469.

    Google Scholar 

  • Mullins H.T. 1998. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology 26: 443-446.

    Google Scholar 

  • Mullins H.T., Hinchey E.J., Wellner R.W., Stephens D.B., Anderson W.T. Jr, Dwyer T.R. et al. 1996. Seismic stratigraphy of the Finger Lakes: A continental record of Heinrich Event H-1 and Laurentide Ice Sheet instability. In: Mullins H.T. and Eyles N. (eds), Subsurface Geological Investigations of New York Finger Lakes: Implications for Late Quaternary Deglaciation and En-vironmental Change. Geological Society of America Special Paper 311, Boulder., pp. 1-36.

  • Overpeck J.T. 1996. Warm climate surprises. Science 271: 1820-1821.

    Google Scholar 

  • Schelske C.L. and Hodell D.A. 1991. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnol. Oceanogr. 36: 961-975.

    Google Scholar 

  • Schelske C.L. and Hodell D.A. 1995. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnol. Oceanogr. 40: 918-929.

    Google Scholar 

  • Schwalbe A., Locke S.M. and Dean W.E. 1995. Ostracode δ 18O and δ 13C evidence of Holocene environmental changes in the sediments of two Minnesota lakes. J. Paleolim. 14: 281-296.

    Google Scholar 

  • Silliman J.E., Meyers P.A. and Bourbonniere R.A. 1996. Record of postglacial organic matter delivery and burial in sediments of Lake Ontario. Org. Geochem. 24: 463-472.

    Google Scholar 

  • Strong A. and Eadie B.J. 1978. Satellite observations of calcium carbonate precipitation in the Great Lakes. Limnol. Oceanogr. 31: 1081-1093.

    Google Scholar 

  • Teranes J.L. and McKenzie J.A. 1999. Environmental change controls of lacustrine carbonate, Cayuga Lake, New York. Geology 27: 187-188.

    Google Scholar 

  • Thompson J.B., Schultze-Lam S., Beveridge T.J. and Des Marais D.J. 1997. Whiting events: biogenic origin due to photosynthetic activity of cyanobacterial picoplankton. Limnol. Oceanogr. 42: 133-141.

    Google Scholar 

  • Wing M.R., Preston A., Acquisito N. and Ahrnsbrak W.F. 1995. Intrusion of saline groundwater into Seneca and Cayuga Lakes, New York. Limnol. Oceanogr. 40: 791-801.

    Google Scholar 

  • Yu Z. and Eicher U. 1998. Abrupt climate oscillations during the last deglaciation in central North America. Science 282: 2235-2238.

    Google Scholar 

  • Yu Z., McAndrews J.H. and Eicher U. 1997. Middle Holocene dry climate caused by change in atmospheric circulation patterns: evidence from lake levels and stable isotopes. Geology 25: 251-254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Meyers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, P.A. Evidence of mid-Holocene climate instability from variations in carbon burial in Seneca Lake, New York. Journal of Paleolimnology 28, 237–244 (2002). https://doi.org/10.1023/A:1021662222452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021662222452

Navigation