Skip to main content
Log in

Prey-Related Odor Preference of the Predatory Mites Typhlodromalus Manihoti and Typhlodromalus Aripo (Acari: Phytoseiidae)

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Typhlodromalus manihoti and Typhlodromalus aripo are exotic predators of the cassava green mite Mononychellus tanajoa in Africa. In an earlier paper, we showed that the two predators were attracted to odors from M. tanajoa-infested cassava leaves. In addition to the key prey species, M. tanajoa, two alternative prey mite species, Oligonychus ossypii and Tetranychus urticae also occur in the cassava agroecosystem. Here, we used a Y-tube olfactometer to determine the attraction of the predators to odors from O. gossypii- or T. urticae-infested cassava leaves and their prey-related odor preference. T. aripo but not T. manihoti was slightly attracted to odors from O. gossypii-infested leaves. Both predator species showed a stronger response to odors from cassava leaves infested by M. tanajoa over odors from cassava leaves infested by O. gossypii. Neither predator species was attracted to odors from T. urticae-infested leaves and the predators preferred the odors from M. tanajoa-infested leaves over those from T. urticae-infested leaves. When O. gossypii was present together with M. tanajoa on the same leaves or on different sets of leaves offered together as an odor source the two predators were attracted. In contrast, after mixing non-attractive odors from T. urticae-infested leaves with attractive odors from M. tanajoa-infested leaves, neither T. aripo nor T. manihoti was attracted. Ecological advantages and disadvantages of the predators’ behavior and possible implications for biological control of M. tanajoa are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agelopoulos, N.G. and Keller, M.A. 1994. Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-Brassicaceae (Cruciferae). I. Sources of infochemicals. J. Chem. Ecol. 20: 1725-1734.

    Article  CAS  Google Scholar 

  • Bellotti, A.C., Mesa, N., Serrano, M., Guerroro, J.M. and Herrera, C.J. 1987. Taxonomic inventory and survey activity for natural enemies of cassava green mites in the Americas. Insect Sci. Appl. 8: 845-849.

    Google Scholar 

  • Braun, A.R., Bellotti, A.C., Guerrero, J.M. and Wilson, L.T. 1989. Effect of predator exclusion on cassava infested with tetranychid mites (Acari: Tetranychidae). Environ. Entomol. 18: 711-714.

    Google Scholar 

  • De Moraes, C.M., Lewis,W.J., Pare, P.W., Alborn, H.T. and Tumlinson, J.H. 1998. Herbivoreinfested plants selectively attract parasitoids. Nature 393: 570-573.

    Article  CAS  Google Scholar 

  • Dicke, M. 1999. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol. Exp. Appl. 91: 131-142.

    Article  CAS  Google Scholar 

  • Dicke, M., Sabelis,W.M. and van den Berg, H. 1989. Does prey preference change as a result of prey species being presented together? Analysis of prey selection by the predatory mite Typhlodromalus pyri (Acarina: Phytoseiidae). Oecologia 81: 302-309.

    Google Scholar 

  • Drukker, B., Bruin, J., Jacobs, G., Kroon, A. and Sabelis, M.W. 2000. How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous prey. Exp. Appl. Acarol. 24: 881-895.

    Article  PubMed  CAS  Google Scholar 

  • Du, Y.-J., Poppy, G.M., Powell, W., Pickett, J.A., Wadhams, L.J. and Woodcock, C.M. 1998. Identification of semiochemicals released during aphid feeding that attract the parasitoid Aphidius ervi. J. Chem. Ecol. 24: 1355-1368.

    Article  CAS  Google Scholar 

  • Geervliet, J.B.F., Vet, L.E.M. and Dicke, M. 1996. Innate response of the parasitoids Cotesia glomerata and C. rubecula (Hymenoptera: Braconidae) to volatiles from different plant-herbivore complexes. J. Insect Behavior 9: 525-538.

    Article  Google Scholar 

  • Gnanvossou, D. 2002. Infochemical use by predatory mites of the cassava green mite in a multitrophic context. PhD Thesis, Wageningen University, Wageningen, The Netherlands, 152 pp.

    Google Scholar 

  • Gnanvossou, D., Hanna, R., Dicke, M. and Yaninek, J.S. 2001. Attraction of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo to cassava plants infested by cassava green mite. Entomol. Exp. Appl. 101: 291-298.

    Article  Google Scholar 

  • Hanna, R. and Wilson, L.T. 1991. Prey preference by Metaseiulus occidentalis (Acari: Phytoseiidae) and the role of prey aggregation. Biol. Contr. 1: 51-58.

    Article  Google Scholar 

  • Hanna, R., Wilson, L.T., Zalom, F.G. and Flaherty, D.L. 1997. Effects of predation and competition on the population dynamics of Tetranychus pacificus on grapevines. J. Appl. Ecol. 34: 878-888.

    Article  Google Scholar 

  • Holt, R.D. and Lawton, J.H. 1994. The ecological consequences of shared natural enemies. Annu. Rev. Ecol. Syst. 25: 495-520.

    Article  Google Scholar 

  • Huang, C. and Sih, A. 1990. Experimental studies on behaviorally mediated, indirect interactions through a shared predator. Ecology 71: 1515-1522.

    Article  Google Scholar 

  • Janssen, A. 1999. Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol. Exp. Appl. 90: 191-198.

    Article  Google Scholar 

  • Jeppson, L.R., Keiffer, H.H. and Baker, E.W. 1975. Mites Injurious To Economic Plants, 614 pp. University of California Press, United States of America.

    Google Scholar 

  • Krips, O.E., Willems, P.E.L., Gols, R., Posthumus, M.A. and Dicke, M. 1999. The response of Phytoseiulus persimilis to spider mite-induced volatiles from gerbera: influence of starvation and experience. J. Chem. Ecol. 25: 2623-2641.

    Article  CAS  Google Scholar 

  • Mattiacci, L., Dicke, M. and Posthumus, M.A. 1994. Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae: role of mechanical damage and herbivore elicitor. J. Chem. Ecol. 20: 2229-2247.

    Article  CAS  Google Scholar 

  • Mégevand, B., Klay, A., Gnanvossou, D. and Paraïso, G. 1993. Maintenance and mass rearing of phytoseiid predators of the cassava green mite. Exp. Appl. Acarol. 17: 113-128.

    Google Scholar 

  • Nyiira, Z.M. 1972. Report of investigation of cassava mite, Mononychellus tanajoa (Bondar). Entomology Section, Kavanda Research Station, Kampala, Uganda, 14 pp.

    Google Scholar 

  • Sabelis, M.W. 1981. Biological Control of Two-spotted Spider Mites Using Phytoseiid Predators. Part I:Modelling the Predator-Prey Interaction at the Individual Level, 242 pp. Centre for Agricultural Publishing and Documentation, PUDOC, Wageningen.

    Google Scholar 

  • Sabelis, M.W. and van de Baan, H.E., 1983. Location of distant spider mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol. Exp. Appl. 33: 303-314.

    Google Scholar 

  • Schmitt, R.J. 1987. Indirect interactions between prey: apparent competition, predator aggregation, and habitat segregation. Ecology 68: 1887-1897.

    Article  Google Scholar 

  • Shiojiri, K., Takabayashi, J., Yano, S. and Takafuji, A. 2001. Infochemically mediated tritrophic interaction webs on cabbage plants. Popul. Ecol. 43: 23-39.

    Article  Google Scholar 

  • Takabayashi, J. and Dicke, M. 1992. Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64: 187-193.

    Google Scholar 

  • Takabayashi, J., Dicke, M. and Posthumus, M.A. 1991. Variation in composition of predatorattracting allelochemicals emitted by herbivore-infested plants: relative influence of plant and herbivore. Chemoecology 2: 1-6.

    Article  CAS  Google Scholar 

  • Takabayashi, J., Dicke, M. and Posthumus, M.A. 1994. Volatile herbivore-induced terpenoids in plant-mite interactions: variation caused by biotic and abiotic factors. J. Chem. Ecol. 20: 1329-1354.

    Article  CAS  Google Scholar 

  • Toko, M., O'Neil, R.J. and Yaninek, J.S. 1994. Effect of cassava exudate and prey densities on the survival and reproduction of Typhlodromalus limonicus (Garman & McGregor) s.l. (Acari: Phytoseiidae), a predator of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae). Exp. Appl. Acarol. 18: 221-231.

    Article  Google Scholar 

  • Tomczyk, A. and Kropczynska, D. 1985. Effects of the host plants. In: Spider Mites. Their Biology, Natural Enemies and Control, W. Helle and M.W. Sabelis (eds), pp. 317-329. Elsevier, Amsterdam.

    Google Scholar 

  • Tumlinson, J.H., Turlings, T.C.J. and Lewis, W.J. 1992. The semiochemical complexes that mediate insect parasitoid foraging. Agric. Zool. Rev. 5: 221-252.

    Google Scholar 

  • Turlings, T.C.J., Tumlinson, J.H. and Lewis, W.J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251-1253.

    CAS  Google Scholar 

  • Turlings, T.C.J., Tumlinson, J.H., Eller, F.J. and Lewis, W.J. 1991. Larval-damaged plants: sources of volatile synomones that guide the parasitoid Cotesia marginiventris to the microhabitat of its hosts. Entomol. Exp. Appl. 58: 75-82.

    Article  Google Scholar 

  • Vet, L.E.M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Ann. Rev. Entomol. 37: 141-172.

    Article  Google Scholar 

  • Vet, L.E.M., de Jong, A.G. and Papaj, D.R. 1998. The effect of complete versus incomplete information on odour discrimination in a parasitic wasp. Anim. Behaviour 55: 1271-1279.

    Article  Google Scholar 

  • Vos, M., Berrocal, S.M., Karamaouna, F., Hemerik, L. and Vet, L.E.M. 2001. Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecol. Lett. 4: 38-45.

    Article  Google Scholar 

  • Yaninek, J.S. and Onzo, A. 1988. Survey of cassava green mite in the People's Republic of Benin, January 1988. Report IITA (International Institute of Tropical Agriculture), 30 pp.

  • Yaninek, J.S. and Gnanvossou, D. 1993. Fresh and dry weights of Mononychellus tanajoa (Acari: Tetranychidae): a functional description of biomass accumulation. Exp. Appl. Acarol. 17: 775-779.

    Google Scholar 

  • Yaninek, J.S., De Moraes, G.J. and Markham, R.H. 1989. Handbook on the Cassava Green Mite Mononychellus tanajoa in Africa: A Guide to Their Biology and Procedures of Implementing Classical Biological Control, 140 pp. IITA Publication Series.

  • Yaninek, J.S., Mégevand, B., Ojo, B., Cudjoe, A.R., Abole, E., Onzo, A. and Zannou, I. 1998. Establishment and spread of Typhlodromalus manihoti (Acari: Phytoseiidae), an introduced phytoseiid predator of Mononychellus tanajoa (Acari: Tetranychidae) in Africa. Environ. Entomol. 27: 1496-1505.

    Google Scholar 

  • Zar, J. 1984. Biostatistical Analysis, 2nd edn., 620 pp. Prentice-Hall, Inc., London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnanvossou, D., Hanna, R. & Dicke, M. Prey-Related Odor Preference of the Predatory Mites Typhlodromalus Manihoti and Typhlodromalus Aripo (Acari: Phytoseiidae). Exp Appl Acarol 27, 39–56 (2002). https://doi.org/10.1023/A:1021570205101

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021570205101

Navigation