Skip to main content
Log in

Volume Combustion Modes in Heterogeneous Reaction Systems

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Volume combustion synthesis in metal–metal systems (i.e., Ni-Al and Cu-Al) was investigated. Both thermocouple and infrared imaging techniques were used to study the temperature–time history of the process. It was found that in both systems, volume combustion starts at a temperature near the melting point of aluminum. For the Cu-Al mixture, the reaction essentially occurs uniformly along the sample body; whereas, for Ni-Al, propagation of a rapid reaction wave is typically observed. The characteristic temperature gradient of this wave is more than an order of magnitude lower and the velocity of propagation is even higher, as compared with a conventional combustion wave. An explanation of the observed results based on a new class of wave, the so-called virtual combustion wave, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. N. Semenov, Zur Theorie des Verbrennungsprozesses, Zhur. Fiz. B. 42, 571 (1929).

    Google Scholar 

  2. A. G. Merzhanov, V. V. Barzykin, V. G. Abramov, The theory of thermal explosion: From N. N. Semenov to present day, Chem. Phys. Rpt. 15, 793 (1996).

    Google Scholar 

  3. T. Boddington, P. Gray, W. Kordlewski, and S. K. Scott, Thermal explosion with extensive reactant consumption: A new criterion for criticality, Proc. Roy. Soc. London A 390, 13 (1983).

    Google Scholar 

  4. A. Varma, A. S. Rogachev, A. S. Mukasyan, S. Hwang, Combustion synthesis of advanced materials: Principles and applications, Advan. Chem. Eng. 24, 79 (1998).

    Google Scholar 

  5. Y. S. Naiborodenko, V. I. Itin, and K. V. Savitskii, Exothermic effects during sintering of a mixture of nickel and aluminum powders, Sov. Phys. J. 11, 19 (1968).

    Google Scholar 

  6. K. A. Philpot, Z. A. Munir, J. B. Holt, An investigation of the synthesis of nickel aluminides through gasless combustion, J. Mater. Sci. 22, 159 (1987).

    Google Scholar 

  7. V. E. Ovcharenko and E. N. Bodyagin, The influence of aluminum content on the temperature profile characteristics during synthesis of Ni3Al in the thermal explosion mode, Combust. Expos. Shock Waves 34, 639 (1998).

    Google Scholar 

  8. A. G. Gasparyan and A. S. Shteinberg, Macrokinetics of interaction and thermal explosion in mixtures of nickel-aluminum powders, Combust. Expos. Shock Waves 24, 324 (1988).

    Google Scholar 

  9. V. A. Knyazik, A. S. Shteinberg, and V. I. Gorovenko, Thermal analysis of high-speed high-temperature reactions of refractory carbide synthesis, J. Therm. Anal. 40, 363 (1993).

    Google Scholar 

  10. A. G. Merzhanov, E. B. Pis'menskaya, V. I. Ponomarev, A. S. Rogachev, Dynamic X-ray crystallography of phase transitions in synthesis of intermetallic compounds under thermal explosion condition, Dokl. Phys. Chem. 363, 381 (1998).

    Google Scholar 

  11. E. B. Pis'menskaya, A. S. Rogachev, V. I. Ponamorev, Macrokinetics of thermal explosion in Nb-Al system: Dynamics of phase formation, Combust. Expos. Shock Waves 36, 198 (2000).

    Google Scholar 

  12. A. G. Merzhanov, N. I. Ozerkovskaya, K. G. Shkadinskii, Thermal explosion in the post induction period, Dokl. Russ. Akad. Nauk 362, 60 (1998).

    Google Scholar 

  13. A. Varma, A. S. Rogachev, A. S. Mukasyan and S. Hwang, Complex Behavior of Self-Propagating Reaction Waves in Heterogeneous Media, Proc. Natl. Acad. Sci. USA 95, 11053 (1998).

    Google Scholar 

  14. K. A. Philpot, Z. A. Munir, and J. B. Holt, An investigation of the synthesis of nickel aluminides through gasless combustion. J. Mater. Sci. 22, 159 (1987).

    Google Scholar 

  15. H. P. Li and J. A. Sekhar, The influence of the reactant size on the micropyretic synthesis of NiAl intermetallic compounds. J. Mater. Res. 10, 2471 (1995).

    Google Scholar 

  16. L. Thiers, A. S. Mukasyan, and A. Varma, Thermal explosion in Ni-Al system: Influence of reaction medium microstructure, Combust. Flame 2002 (in press).

  17. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetalic Compounds, Tomsk University, Tomsk, Russia, (1989).

    Google Scholar 

  18. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, Hemisphere Publishing Corporation, Washington, 1981, p. 689.

    Google Scholar 

  19. A. G. Merzhanov, E. B. Pis'menskaya, V. I. Ponomarev, and A. S. Rogachev, Dynamic X-ray crystallography of intermetallic compounds under thermal explosion conditions, Dokl. Phys. Chem. 363, 381 (1998).

    Google Scholar 

  20. A. S. Rogachev, A. Varma, and A. G. Merzhanov, The mechanism of self-propagating high-temperature synthesis of nickel aluminides, Int. J. SHS 2, 25 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogachev, A.S., Mukasyan, A.S. & Varma, A. Volume Combustion Modes in Heterogeneous Reaction Systems. Journal of Materials Synthesis and Processing 10, 31–36 (2002). https://doi.org/10.1023/A:1021096812808

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021096812808

Navigation