Skip to main content
Log in

Hydrogen Bonding with Adsorbent During Storage Governs Drug Dissolution from Solid-Dispersion Granules

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate changes in drug dissolution on storage of ternary solid-dispersion granules containing poorly water-soluble drugs.

Methods. Hot-melt granulation was used to prepare ternary solid-dispersion granules in which the drug was dispersed in a carrier and coated onto an adsorbent. Seven drugs including four carboxylic acid-containing drugs (BAY 12-9566, naproxen, ketoprofen, and indomethacin), a hydroxyl-containing drug (testosterone), an amide-containing drug (phenacetin), and a drug with no proton-donating group (progesterone) were studied. Gelucire 50/13 and polyethylene glycol (PEG) 8000 were used as dispersion carriers whereas Neusilin US2 (magnesium aluminosilicate) was used as the surface adsorbent.

Results. Two competing mechanisms have been proposed to explain the complex changes observed in drug dissolution upon storage of solid dispersion granules. Conversion of the crystalline drug to the amorphous hydrogen bonded (to Neusilin) state seems to increase dissolution, whereas, the phenomenon of Ostwald ripening can be used to explain the decrease in drug dissolution upon storage. The solubility of the drug in Gelucire is a crucial factor in determining the predominant mechanism by governing the flux toward the surface of Neusilin. The mobility for this phenomenon was provided by the existence of the eutectic mixture in the molten liquid state during storage.

Conclusions. A competitive balance between hydrogen bonding of the drugs with Neusilin and Ostwald ripening determines drug dissolution from solid-dispersion granules upon storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. L. Ford. The current status of solid dispersions. Pharm.Acta Helv. 61:69-88 (1986).

    PubMed  Google Scholar 

  2. W. L. Chiou and S. Riegalman. Pharmaceutical applications of solid dispersion systems. J.Pharm.Sci. 60:1281-1302 (1971).

    PubMed  Google Scholar 

  3. A. T. M. Serajuddin. Solid dispersions of poorly water-soluble drugs: Early promises, Subsequent problems, and recent breakthroughs. J.Pharm.Sci. 88:1058-1066 (1999).

    Article  PubMed  Google Scholar 

  4. C. Leuner and J. Dressman. Improving drug solubility for oral delivery using solid dispersions. Eur.J.Pharm.Bio. 50:47-60 (2000).

    Google Scholar 

  5. M. K. Gupta, D. Goldman, R. H. Bogner, and Y. Tseng. Enhanced drug dissolution and bulk properties of solid dispersions granulated with a surface adsorbent. Pharm.Dev.Technol. 6:563-572 (2001).

    PubMed  Google Scholar 

  6. M. K. Gupta, R. H. Bogner, D. Goldman, and Y. Tseng. Mechanism for further enhancement in drug dissolution from soliddispersion granules. Pharm.Dev.Technol. 7:103-112 (2002).

    PubMed  Google Scholar 

  7. I. Chang and G. E. Maciel. Probing hydrogen bonding and the local environment of silanols on silica surfaces via nuclear spin cross polarization dynamics. J.Am.Chem.Soc. 118:401-406 (1996).

    Google Scholar 

  8. I. Chang and G. E. Maciel. A detailed model of local structure and silanol hydrogen bonding of silica gel surfaces. J.Phys.Chem.B. 101:3052-3064 (1997).

    Google Scholar 

  9. T. Watanabe, N. Wakiyama, F. Usui, M. Ikeda, T. Isobe, and M. Senna. Stability of amorphous indomethacin compounded with silica. Int.J.Pharm. 226:81-91 (2001).

    PubMed  Google Scholar 

  10. T. Matsumoto and G. Zografi. Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm.Res. 16:1722-1728 (1999).

    Article  PubMed  Google Scholar 

  11. F. Pozzi, A. Longo, C. Lazzarini, and A. Carenzi. Formulations of ubidecarenone with improved bioavailability. Eur.J.Pharm.Biopharm. 37:243-246 (1991).

    Google Scholar 

  12. P. C. Sheen, S. I. Kim, J. J. Petillo, and A. T. M. Serajuddin. Hydrogen Bonding with Adsorbent during Storage Governs Drug Dissolution 1671 Bioavailability of a poorly water-soluble drug from tablet and solid dispersion in humans. J.Pharm.Sci. 80:712-714 (1991).

    PubMed  Google Scholar 

  13. D. Q. M. Craig. Polyethylene glycols and drug release. Drug Dev.Ind.Pharm. 16:2501-2526 (1990).

    Google Scholar 

  14. J. C. Price. Polyethylene glycol. In: A. Wade and P. J. Weller (eds.), Handbook of Pharmaceutical excipients, The Pharmaceutical Press, London, 1994 pp. 355-361.

    Google Scholar 

  15. Company literature on Neusilin. Fuji Chemical Industry Co. Ltd., Toyama Japan, pp. 3-4.

  16. L. S. Taylor and G. Zografi. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm.Res. 14:1691-1698 (1997).

    PubMed  Google Scholar 

  17. N. Hirasawa, K. Danjo, M. Haruna, and A. Otsuka. Physicochemical characterization and drug release studies of naproxen solid dispersions using lactose as a carrier. Chem.Pharm.Bull. 46:1027-1030 (1998).

    Google Scholar 

  18. R. M. Silverstein, G. C. Bassler, and T. C. Morrill. Spectrometric identification of organic compounds, John Wiley and Sons, Inc., New York, 1991.

    Google Scholar 

  19. R. Suryanarayanan. X-ray powder diffractometry. Drugs Pharm.Sci 70:187-221 (1995).

    Google Scholar 

  20. R. Duclos, J. Grenet, J. M. Saiter, P. Besancon, and A. M. Orecchioni. Effect of ageing on progesterone-polyethylene glycol 6000 dispersions, X-ray study. Drug Dev.Ind.Phar 16:255-265 (1990).

    Google Scholar 

  21. K. Arnold, A. Herrman, L. Pratsch, and K. Gawrisch. The dielectric properties of aqueous solutions of poly (ethylene glycol) and their influence on membrane structure. Biochim.Biophys.Acta 815:515-518 (1985).

    PubMed  Google Scholar 

  22. M. Muramatsu, M. Iwahashi, and U. Takeuchi. Thermodynamic relationship between ? and ?-forms of crystalline progesterone. J.Pharm.Sci. 68:175-177 (1979).

    PubMed  Google Scholar 

  23. S. Shamblin, X. Tang, L. Chang, B. Hancock, and M. J. Pikal. Characterization of the time scales of molecular motion in pharmaceutically important glasses. J.Phys.Chem.B 103:4113-4121 (1999).

    Google Scholar 

  24. P. Tong and G. Zografi. Solid state characteristics of amorphous sodium indomethacin relative to its free acid. Pharm.Res. 16:1186-1192 (1999).

    PubMed  Google Scholar 

  25. J. A. Searles, J. F. Carpenter, and T. W. Randolph. Annealing to optimize the primary drying rate, reduce freezing induced drying rate heterogeneity, and determine Tg' in pharmaceutical lyophilization. J.Pharm.Sci. 90:872-887 (2001).

    PubMed  Google Scholar 

  26. W. Bender and L. Ratke. Ostwald ripening of liquid phase sintered Cu-Co dispersions at high volume fractions. Acta Matter 46:1125-1133 (1998).

    Google Scholar 

  27. A. J. Ardell. Microstructural stability at elevated temperatures. J.Eur.Ceramic Soc. 19:2217-2231 (1999).

    Google Scholar 

  28. H. Eliasen, T. Schaefer, and H. G. Kristensen. Effects of binder rheology on melt agglomeration in a high shear mixer. Int.J.Pharm. 176:73-83 (1998).

    Google Scholar 

  29. Company literature on Carbowax. Polyethylene glycols and methoxypolyethylene glycols, Union Carbide, Danbury, Connecticut, pp. 15-17. Gupta et al. 1672

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin H. Bogner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M.K., Tseng, YC., Goldman, D. et al. Hydrogen Bonding with Adsorbent During Storage Governs Drug Dissolution from Solid-Dispersion Granules. Pharm Res 19, 1663–1672 (2002). https://doi.org/10.1023/A:1020905412654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020905412654

Navigation