Skip to main content
Log in

A Compartmental Analysis of the Pharmacokinetics of Propofol in Sheep

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Conventional compartmental pharmacokinetic analysis may provide inaccurate prediction of drug concentrations after rapid iv administration. To examine this, compartment and effect compartment analysis was applied to measured arterial and brain concentrations of propofol in sheep after iv administration at a range of doses and dose rates. Although arterial and brain concentrations were reasonably well fitted to compartmental and effect compartment models for individual doses and dose rates, the structure and parameters of all models differed with changes in both dose and rate of administration. There were large discrepancies between predicted and measured arterial and brain concentrations when these models were used to predict drug concentrations across doses and dose rates. These data support the limitations of this type of modeling in the setting of rapid propofol administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Smith, P. F. White, M. Nathanson, and R. Gouldson. Propofol: an update on its clinical use. Anesthesiology 81:1005-1043 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. J. Kanto and E. Gepts. Pharmacokinetic implications for the clinical use of propofol. Clin. Pharmacokin. 17:308-326 (1989).

    Article  CAS  Google Scholar 

  3. J. Vuyk, F. H. M. Engbers, A. G. L. Burm, A. A. Vletter, and J. G. Bovill. Performance of computer-controlled infusion of propofol: An evaluation of five pharmacokinetic parameter sets. Anesth. Analg. 81:1275-1282 (1995).

    CAS  PubMed  Google Scholar 

  4. W. L. Chiou. Potential pitfalls in the conventional pharmacokinetic studies. J. Pharmacokinet. Biopharm. 7:527-537 (1979).

    Article  CAS  PubMed  Google Scholar 

  5. T. C. Krejcie, T. K. Henthorn, C. A. Shanks, and M. J. Avram. A recirculatory pharmacokinetic model describing the circulatory mixing, tissue distribution, and elimination of antipyrine in dogs. J. Pharmacol. Exp. Ther. 269(2):609-616 (1994).

    CAS  PubMed  Google Scholar 

  6. S. Bjorkman, J. Akeson, F. Nilsson, K. Messeter, and B. Roth. Ketamine and midazolam decrease cerebral blood flow and consequently their own rate of transport to the brain: an application of mass balance pharmacokinetics with a changing regional blood flow. J. Pharmacokin. Biopharm. 20:637-652 (1992).

    Article  CAS  Google Scholar 

  7. G. L. Ludbrook, R. N. Upton, C. Grant, and E. C. Gray. The brain and blood concentrations of propofol after rapid iv injection in sheep, and their relationships to cerebral effects. Anaesth. Intensive Care 24(4):445-452 (1996).

    CAS  PubMed  Google Scholar 

  8. G. L. Ludbrook, R. N. Upton, C. Grant, and A. Martinez. The effect of rate of administration on brain concentrations of propofol in sheep. Anesth. Analg. 00(6):1301-1306 (1998).

    CAS  Google Scholar 

  9. G. L. Ludbrook, R. N. Upton, C. Grant, and A. Martinez. Prolonged dysequilibrium between blood and brain concentrations of propofol during infusions in sheep. Acta Anaesthesiol. Scand. 43:206-211 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. D. L. Roerig, K. J. Kotrly, C. A. Dawson, S. B. Ahlf, J. F. Gualtieri, and J. P. Kampine. First-pass uptake of verapamil, diazepam, and thiopental in the human lung. Anesth. Analg. 69:461-466 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. T. K. Henthorn, T. C. Krejcie, and M. J. Avram. The relationship between alfentanil distribution kinetics and cardiac output. Clin. Pharmacol. Ther. 52:190-196 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. D. Zheng, R. N. Upton, A. M. Martinez, C. Grant, and G. L. Ludbrook. The influence of the bolus injection rate of propofol on its cardiovascular effects and peak blood concentrations in sheep. Anesth. Analg. 86:1109-1115 (1998).

    CAS  PubMed  Google Scholar 

  13. T. W. Schnider, C. F. Minto, P. L. Gambus, C. Andresen, D. B. Goodale, S. L. Shafer, and E. J. Youngs. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 88:1170-1182 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. H. K. Adam, L. P. Briggs, M. Bahar, E. J. Douglas, and J. W. Dundee. Pharmacokinetic evaluation of ICI 35 868 in man. Single induction doses with different rates of injection. Br. J. Anaesth. 55:97-103 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. R. M. Tackley, G. T. Lewis, C. Prys Roberts, R. W. Boaden, J. Dixon, and J. T. Harvey. Computer controlled infusion of propofol. Br. J. Anaesth. 62:46-53 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. R. N. Upton and G. L. Ludbrook. A physiological model of the induction of anaesthesia with propofol in sheep. 1. Structure and estimation of parameters. Br. J. Anaesth. 79:497-504 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludbrook, G.L., Upton, R.N., Grant, C. et al. A Compartmental Analysis of the Pharmacokinetics of Propofol in Sheep. J Pharmacokinet Pharmacodyn 27, 329–338 (1999). https://doi.org/10.1023/A:1020903315017

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020903315017

Navigation