Skip to main content
Log in

Development of an Internal Bone Remodelling Theory and Applications to Some Problems in Orthopaedic Biomechanics*

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Bone tissue is a porous, heterogeneous and anisotropic material, which adapts its mechanical properties depending of the local stress level. This evolutive behaviour of the bone is normally known as bone remodelling. In this work, a bone-remodelling theory, based on the principles of continuum damage mechanics, is presented. The corresponding mathematical formulation has been implemented in a finite element code in order to predict the bone response after implantation of a prosthesis or fixation. Although the present model is not based on experimental verification, the model predicts important qualitative experimental results, being still necessary to test against experimental/clinical work. The main aim of this paper has been, therefore, the qualitative study of the long-term bone evolution, especially of the human femur when different types of implants are employed. A comparative analysis between two widely used hip prostheses (the Exeter and the SHP), has been performed. We have also studied the treatment of proximal femoral fractures by means of extramedullary and intramedullary implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lemaitre, J., ‘A continuous damage mechanics model for ductile fracture’, J. Eng. Mater. Technol. 107 (1985) 83-89.

    Google Scholar 

  2. Cordebois, J.P. and Sideroff, F., ‘Damage induced elastic anisotropy’, Mechanical Behavior of Anisotropic Solids, in, Proc. EUROMECH Colloquium 115, 1982, pp. 761-774.

    Google Scholar 

  3. Kachanov, L.M., ‘Time of the rupture process under creep conditions’, IVZ Akad. Nauk S.S.R. Otd Tech Nauk 8 (1958) 26-31.

    Google Scholar 

  4. Prendergast, P.J. and Taylor, D., ‘Prediction of bone adaptation using damage accumulation’, J. Biomech. 27(8) (1994) 1067-1076.

    Google Scholar 

  5. Huiskes, R., Weinans, H., Grootenboer, H.J., Dalstra, M., Fudala, B. and Sloof, T.J., ‘Adaptive bone-remodeling theory applied to prosthetic-design analysis’, J. Biomech. 20(11/12) (1987) 1135-1150.

    Google Scholar 

  6. Carter, D.R., Orr, T.E. and Pyhrie, D.P., ‘Relationships between loading history and femoral cancellous bone architecture’, J. Biomech. 22(3) (1989) 231-244.

    Google Scholar 

  7. Beaupré, G.S., Orr, T.E. and Carter, D.R., ‘An approach for time-dependent bone modeling and remodelingapplication: A preliminary remodeling simulation’, J. Orthopaedic Res. 8(5) (1990) 662-670.

    Google Scholar 

  8. Jacobs, C.R., Numerical Simulation of Bone Adaptation to Mechanical Loading, Dissertation for the Degree of Doctor of Philosophy, Stanford University, 1994.

  9. Cowin, S.C., Sadegh, A.M. and Luo, G.M., ‘An evolutionary Wolff's law for trabecular architecture’, J. Biomech. Eng. 114 (1992) 129-136.

    Google Scholar 

  10. Doblaré, M. and García, J.M., ‘Anisotropic bone remodelling model based on a continuum damage-repair Theory’, J. Biomech. 35(1) (2002) 1-17.

    Google Scholar 

  11. Van Rietbergen, B., Odgaard, A., Kabel, J. and Huiskes, R., ‘Direct mechanics assesment of elastic symmetries and properties of trabecular bone architecture’, J. Biomech. 29(12) (1996) 1653-1657.

    Google Scholar 

  12. Odgaard, A., Kaber, J., Van Rietbergen, B., Dalstra, M. and Huiskes, R., ‘Fabric and elastic principal directions of cancellous bone are closely related’, J. Biomech. 30(5) (1997) 487-495.

    Google Scholar 

  13. Martin, R.B., ‘Porosity and specific surface of bone’, CRC Critical Reviews Biomed. Engineer. (1984) 179-222.

  14. Simo, J.C. and Ju, J.W., ‘Strain-and stress-based continuum damage models. I. Formulation’, Int. J. Solids Struct. 23 (1987) 821-840.

    Google Scholar 

  15. Hibbit, Karlsson and Sorensen, Inc., ‘ABAQUS’, User's Manual, Version 6.1, 2000.

  16. Doblaré, M. and García, J.M., ‘Application of an anisotropic bone remodelling model based on a damagerepair theory to the analysis of the proximal femur before and after total hip replacement’, J. Biomech. 34(9) (2001) 1157-1170.

    Google Scholar 

  17. García, J.M., Martínez, M.A. and Doblaré, M., ‘An anisotropic internal-external bone adaptation model based on a combination of CAO and continuum damage mechanics technologies’, Computer Meth. Biomech. Biomed. Eng. 4(4) (2001) 355-378.

    Google Scholar 

  18. Ling, R.S.M., The history and development of the exeter hip, 1997 (www.howmedica.com/exeter/index.html)

  19. Huiskes, R. and Boeklagen, R., ‘Mathematical shape optimisation of hip prosthesis design’, J. Biomech. 22(8-9) (1989) 793-804.

    Google Scholar 

  20. Huiskes, R., Verdonschot, N. and Nivbrant, B., ‘Migration, stem shape and surface finish in cemented total hip arthroplasty’, Clinical Orthopaedics 355 (1998) 103-112.

    Google Scholar 

  21. Müller, M.E., Allgöwer, M., Schneider, R. and Willenegger, H., Manual de Osteosíntesis, Springer-Verlag, Ibérica, 1993.

    Google Scholar 

  22. Pedersen, D.R., Brand, R.A. and Davy, D.T., ‘Pelvic muscle and acetabular contact forces during gait’, J. Biomech. 30(9) (1997) 959-965.

    Google Scholar 

  23. Kempf, I., Grosse, A., Taglang, G. and Favreul, E., ‘Le clou Gamma dans le traitement à foyer fermé desfractures trochantériennes. Résultats et indications à propos d'une série de 121 cas’, Rev. Chir. Orthop. 79 (1993) 29-40.

    Google Scholar 

  24. Regazzoni, P., Rüedi, Th., Winquist, R. and Allgöwer, M., The Dynamic Hip Screw Implant System, Springer-Verlag, Madrid, 1985.

    Google Scholar 

  25. Wang, C.J., Yettram, A.L., Yao, M.S. and Procter, P., ‘Finite element analysis of a Gamma nail within a fractured femur’, Med. Eng. Phys. 20(9) (1998) 677-683.

    Google Scholar 

  26. Sim, E., Freimuller, W. and Reiter, T.J., ‘Finite element analysis of the stress distributions in the proximal end of the femur after stabilization of a pertrochanteric model fracture: a comparison of two implants’, Injury 26(7) (1995) 445-449.

    Google Scholar 

  27. Prendergast, P.J., ‘Finite element models in tissue mechanics and orthopaedic implant design’, Clinical Biomech. 12(6) (1997) 343-366.

    Google Scholar 

  28. Kuiper, J.H. and Huiskes, R., ‘The predictive value of stress shielding for quantification of adaptive bone resorption around hip replacements’, J. Biomech. Eng. 119 (1997) 228-231.

    Google Scholar 

  29. Kerner, J., Huiskes, R., van Lenthe, G.H., Weinans, H., van Rietbergen, B., Engh, C.A. and Amis, A.A., ‘Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodelling’, J. Biomech. 32 (1999) 695-703.

    Google Scholar 

  30. McNamara, B.P., Prendergast, P.J. and Taylor, D., ‘Prediction of bone adaptation in the ulnar-osteotomized heep's forelimb using an anatomical finite element model’, J. Biomed. Eng. 14(3) (1992) 209-216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doblaré, M., García, J. & Cegoñino, J. Development of an Internal Bone Remodelling Theory and Applications to Some Problems in Orthopaedic Biomechanics* . Meccanica 37, 365–374 (2002). https://doi.org/10.1023/A:1020835720405

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020835720405

Navigation