Skip to main content
Log in

Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Residual stress was evaluated by measuring the substrate curvature for alkoxide-derived silica and titania films deposited on silica glass substrates. The residual stress was tensile, increasing with increasing heat-treatment temperature. The stress in fired films was affected greatly by water/alkoxide ratio and chelating agents in starting solutions. Secondly, in situ observation was made on cracking of gel films subjected to heat-treatment. Silica and titania gel films deposited on silicon wafers were cracked in the heating-up stage at temperatures of 100°–400°C, depending on the film thickness and heating rate. Larger thickness and lower heating rates were found to lower the cracking onset temperature. Finally, organic polymers with amide groups were demonstrated to increase the uncracking critical thickness. The polymers include polyvinylpyrrolidone and polyvinylacetamide, allowing single layer ceramic coating films over 1 μm in thickness to be formed without cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Atkinson and R.M. Guppy, J. Mater. Sc.i. 26, 3869 (1991).

    Google Scholar 

  2. M.S. Hu, M.D. Thouless, and A.G. Evans, ActaMetall. 36, 1302 (1988).

    Google Scholar 

  3. G.W Scherer, J. Non-Cryst. Solids 147/148, 363 (1992).

    Google Scholar 

  4. C.J. Brinker, A.J. Hurd, P.R. Schunk, G.C. Frye, and C.S. Ashley, J. Non-Cryst. Solids 147/148, 424 (1992).

    Google Scholar 

  5. J.H. Lee, W.K. Choo, Y.S. Kim, and D.W. YUn, J. Appl. Phys. 75, 2455 (1994).

    Google Scholar 

  6. G.A. Rossetti, Jr., L.E. Cross, and K. Kushida, Appl. Phys. Lett. 59, 2524 (1991).

    Google Scholar 

  7. K.A. Cerqua, J.E. Hayden, and W.C. LaCourse, J. Non-Cryst. Solids 100, 471 (1988).

    Google Scholar 

  8. G.J. Exarhos and N.J. Hess, Mat. Res. Soc. Symp. Proc. 271, 319 (1992).

    Google Scholar 

  9. J.H.L. Voncken, C. Lijzenga, K.P. Kumar, K.K Keizer, A.J. Burggraaf, and B.C. Bonekamp, J. Mater. Sci. 27, 472 (1992).

    Google Scholar 

  10. T.M. Parrill, J. Mater. Res. 9, 723 (1994).

    Google Scholar 

  11. C.K. Chiang, W.E. Wallace, G.W. Lynn, D. Feiler, and W. Xia, Appl. Phys. Lett. 76, 430 (2000).

    Google Scholar 

  12. R.R.A. Syms, J. Non-Cryst. Solids 167, 16 (1994).

    Google Scholar 

  13. C.R. Ottermann and K. Bange, Thin Solid Films 286, 32 (1996).

    Google Scholar 

  14. J. Malzbender and G. de With, J. Mater. Sci. 35, 4809 (2000).

    Google Scholar 

  15. H. Kozuka and M. Kajimura, Chem. Lett. 1029 (1999).

  16. H. Kozuka, M. Kajimura, T. Hirano, and K. Katayama, J. Sol-Gel Sci. Techn. 19, 205 (2000).

    Google Scholar 

  17. H. Kozuka and M. Kajimura, J. Am. Ceram. Soc. 83, 1056 (2000).

    Google Scholar 

  18. H. Kozuka, M. Kajimura, K. Katayama, Y. Isota, and T. Hirano, Mat. Res. Symp. Proc. 606, 187 (2000).

    Google Scholar 

  19. H. Kozuka, Y. Isota, A. Higuchi, and T. Hamatani, in Proceedings of International Symposia on Materials Science for the 21th Century, vol. B, edited by N. Miyata, R. Ota, Y. Miyamoto, and T. Shiono (The Society of Materials Science, Japan, 2001), p. 122.

    Google Scholar 

  20. H. Kozuka, Y. Isota, and M. Hosokawa, in Ceramic Processing Science VI, edited by S.-I. Hirano, G.L. Messing, and N. Claussen (The American Ceramic Society, Weterville, 2001), p. 335.

    Google Scholar 

  21. H. Kozuka, K. Katayama, Y. Isota, and S. Takenaka, in Sol-Gel Commercialization and Applications, edited by X. Feng, L.C. Klein, E.J.A. Pope, and S. Komarneni (The American Ceramic Society, Weterville, 2001), p. 105.

    Google Scholar 

  22. H. Kozuka and A. Higuchi, J. Mater. Res. 16, 3116 (2001).

    Google Scholar 

  23. R. Glang, R.A. Holmwood, and R.L. Rosenfeld, Rev. Sci. Instrum. 36, 7 (1965).

    Google Scholar 

  24. H. Schmidt, G. Rinn, R. Nass, and D. Spron, Mat. Res. Soc. Symp. 121, 743 (1988).

    Google Scholar 

  25. P. Innocenzi, M.O. Abdirashid, and M. Guglielmi, J. Sol-Gel Sci. Techn. 3, 47 (1994).

    Google Scholar 

  26. T. Tamakoshi, T. Ban, Y. Ohya, and Y. Takahashi, in Proceedings of the Annual Meeting of the Ceramic Society of Japan, 2001 (The Ceramic Society of Japan, 2001), p. 57 (in Japanesse).

  27. N. Sriprang, D. Kaewchinda, J.D. Kennedy, and S.J. Milne, J. Am. Ceram. Soc. 83, 1914 (2000).

    Google Scholar 

  28. K. Maki, N. Soyama, S. Mori, and K. Ogi, Jpn. J. Appl. Phys. 39, 5421 (2000).

    Google Scholar 

  29. T.J. Garino, Mat. Res. Soc. Symp. Proc. 180, 497 (1990).

    Google Scholar 

  30. S. Takenaka and H. Kozuka, Appl. Phys. Lett. 79, 3485 (2001).

    Google Scholar 

  31. H. Kozuka and Y. Hida, unpublished.

  32. J. Livage, in Chemical Processing of Ceramics, edited by B.I. Lee and E.J.A. Pope (Marcel Dekker, New York, 1994), p. 3.

    Google Scholar 

  33. T. Saegusa and Y. Chujo, Makromol. Chem. Macromol. Symp. 64, 1 (1992).

    Google Scholar 

  34. H. Kozuka and H. Nishikawa, unpublished.

  35. K. Kato, Bull. Ceram. Soc. Jpn. 36, 240 (2001) (in Japanese).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozuka, H., Takenaka, S., Tokita, H. et al. Stress and Cracks in Gel-Derived Ceramic Coatings and Thick Film Formation. Journal of Sol-Gel Science and Technology 26, 681–686 (2003). https://doi.org/10.1023/A:1020773415962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020773415962

Navigation