Skip to main content
Log in

Application of random amplified polymorphic DNA markers to evaluate intraspecific genetic variation in the Elymus alaskanus complex (Poaceae)

  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Random amplified polymorphic DNA (RAPD) markers were used to evaluatethe levels and patterns of genetic diversity in ten Elymusalaskanus populations, which were collected from Canada, USA,Greenland and Russia. Ten arbitrarily chosen decamer primers were used in thisstudy. The results revealed high levels of variation. The mean number of allelesper locus (Ap) was 1.5, ranging from 1.4 to 1.6, the meanpercent of polymorphic loci (Pp) was 49.5%, ranging from35.1% to 64.9%, and the mean gene diversity (Hep) was0.162, varying from 0.142 to 0.262. The total variation wasH T = 0.403. When partitioned(G ST), 60% of the total variation was foundamong the populations. Although the genetic diversity values obtained with RAPDsare much higher than for allozymes, they are similar regarding how the geneticvariation is distributed among populations. In addition, a similar geneticpattern of population differentiation, where populations from Greenland andthe USA (“violaceus” and “latiglumis”)were clearly separated from the others (“hyperarcticus”,“komarovii” and “sajanensis”), wasrevealed by both the cluster and principal coordinates analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åbo-elwafa A., Murai K. and Shimada T. 1995. Intra-and Inter-specific variations in Lens revealed by RAPD markers. Theor. Appl. Genet. 90: 335–340.

    Google Scholar 

  • Ayana A., Bryngelsson T. and Bekele E. 2000. Genetic variation of Ethiopian and Eritrean sorghum (Sorghum biocolor (L.) Moench) germplasm assessed by random amplified polymorphic DNA (RAPD). Genet. Resour. Crop Evol. 47: 471–482.

    Google Scholar 

  • Barkworth M. 1996. The Elymus trachycaulus complex in North America: More question than answer. In: Wang R.R.-C., Jensen L.B. and Jaussi C. (eds), Proc. Second International Triticeae Symposium. Logan, Utah, USA, pp. 189–206.

    Google Scholar 

  • Barkworth M. 1997 Elymus alaskanus. Nomenclatural set. Internet address: http: / / herbarium.usu.edu /openherbarium/ elymalnm.html

  • Bartish I.V., Garkava L.P. and Rumpuunen K. 2000. Phylogenetic relationships and differentiation among and within populations of Chaenomeles Lindl. (Rosaceae) estimated with RAPDs and isozymes. Theor. Appl. Genet. 101: 554–563.

    Google Scholar 

  • Baum B.R., Yen C. and Yang J.L. 1991. Roegneria: its generic limits and justification for its recognition. Can. J. Bot. 69: 282–294.

    Google Scholar 

  • Cao W., Scoles G., Hucl P. and Chibbar R.N. 1999. The use of RAPD analysis to classify Triticum accessions. Theor. Appl. Genet. 98: 602–607.

    Google Scholar 

  • Chan K.F. and Sun M. 1997. Genetic diversity and relationship detected by isozyme and RAPD analysis of crop and wild species of Amaranthus. Theor. Appl. Genet. 95: 865–873.

    Google Scholar 

  • Cody W.J. 1996. Flora of the Yukon Territory. NRC Research Press, Ottawa, Canada.

    Google Scholar 

  • Dawson I.K., Chalmers K.J., Waugh R. and Powell W. 1993. Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol. Ecol. 2: 151–159.

    Google Scholar 

  • Devos K.M. and Gale M.D. 1992. The use of random amplified polymorphic DNA markers in wheat. Theor. Appl. Genet. 84: 567–572.

    Google Scholar 

  • Díaz O., Salomon B. and von Bothmer R. 1999. Genetic variation and differentiation in Nordic populations of Elymus alaskanus (Scrib. Ex Merr.) Löve (Poaceae). Theor. Appl. Genet. 99: 210–217.

    Google Scholar 

  • Díaz O., Salomon B. and von Bothmer R. 2000. Levels and distribution of allozyme and RAPD variation in populations of Elymus fibrosus (Poaceae). Genet. Resour. Crop Evol. 47: 11–24.

    Google Scholar 

  • Fahima T., Sun G.L., Beharav A., Krugman T., Beiles A. and Nevo E. 1998. RAPD polymorphism of wild wheat populations, Triticum dicoccoides, in Israel. Theor. Appl. Genet. 98: 434–447.

    Google Scholar 

  • Ferguson M.E., Newbury H.J., Maxted N., Ford-Lloyd B.V. and Robertson L.D. 1998. Population genetic structure in Lens taxa revealed by isozyme and RAPD analysis. Genet. Resour. Crop Evol. 45: 549–559.

    Google Scholar 

  • Gehrig H.H., Rosicke H. and Kluge M. 1997. Detection of DNA polymorphisms in the genus Kalanchoe by RAPD — PCR fingerprint and its relationships to infrageneric taxonomic positon and ecophysiological photosynthetic behaviour of the species. Plant Science 125: 41–51.

    Google Scholar 

  • Gower J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338.

    Google Scholar 

  • Hamrick J.L. and Godt M.J.W. 1989. Allozyme diversity in plant species. In: Brown A.H.D., Clegg M.T., Kahler A.L. and Weir B.S. (eds), Plant population genetics, breeding and genetic resources. Sinauer Associates Inc., Sunderland, Massachusetts, USA, pp. 43–63.

    Google Scholar 

  • Heun M., Murphy J.P. and Phillips T.D. 1994. A comparison of RAPD and isozyme analyses for determining the genetic relationships among Avena sterilis L. accessions. Theor. Appl. Genet. 87: 689–696.

    Google Scholar 

  • Hauser L.A. and Crovello T.J. 1982. Numerical analysis of generic relationships in Thelypoieae (Brassicaceae). Syst. Bot. 7: 249–268.

    Google Scholar 

  • Jaaska V. 1992. Isoenzyme variation in the grass genus Elymus-(Poaceae). Hereditas 117: 11–22.

    Google Scholar 

  • Joshi C.P. and Nguyen H.T. 1993. Application of the random amplified polymorphic DNA technique for the detection of polymorphism among wild and cultivated tetrapoloid wheats. Genome 36: 602–609.

    Google Scholar 

  • Lanner-Herrera C., Gustafsson M., Falt A.S. and Bryngelsson T. 1996. Diversity in natural populations of wild Brassica oleracea as estimated by isozyme and RAPD analysis. Genet. Resour. Crop Evol. 43: 13–23.

    Google Scholar 

  • Lesica P. and Allendorf F.W. 1994. When are peripheral populations valuable for conservation? Conserv. Biol. 9: 753–760.

    Google Scholar 

  • Liu Z. and Furnier G.R. 1993. Comparison of allozyme, RFLP, and RAPD markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor. Appl. Genet. 87: 97–105.

    Google Scholar 

  • Loveless M.D. and Hamrick J.L. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65–96.

    Google Scholar 

  • Love A. 1984. Conspectus of the Triticeae. Feddes Rep. 95: 425–521.

    Google Scholar 

  • Lynch M. 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91–99.

    Google Scholar 

  • Melderis A. 1978. Taxonomic notes on the tribe Triticeae (Gramineae), with special reference to the genera Elymus L. sensu lato, and Agropyron Gaertner sensu lato. Bot. J. Linn. Soc. 76: 368–384.

    Google Scholar 

  • Muralidharan K. and Wakeland E.K. 1993. Concentration of primer and template qualitatively affects products in random amplified polymorphic DNA PCR. Bio. Techniques 14: 362–364.

    Google Scholar 

  • Nebury H.J. and Ford-Lloyd B.V. 1993. The use of RAPD for assessing variation in plants. Plant Growth Reg. 12: 413–451.

    Google Scholar 

  • Nei M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323.

    Google Scholar 

  • Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.

    Google Scholar 

  • Nevo E. 1998. Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ. Genet. Resour. Crop Evol. 45: 355–370.

    Google Scholar 

  • Newbury H.J. and Ford-Lloyd B.V. 1993. The use of RAPD for assessing variation in plants. Plant Growth Reg. 12: 413–451.

    Google Scholar 

  • Rieseberg L.H. 1996. Homology among RAPD fragments in interspecific comparision. Mol. Ecol. 5: 99–105.

    Google Scholar 

  • Rohlf F.J. 1993. Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, New York, Version 1.80.

    Google Scholar 

  • Russell J.R., Fuller J.D., Macaulay M., Hatz B.G., Jahoor A., Powell W. et al. 1997. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet. 95: 714–732.

    Google Scholar 

  • Schilighting C.D. 1986. The evolution of phenotypic plasticity in plants. Ann. Rev. Ecol. Syst. 17: 667–693.

    Google Scholar 

  • Schoen D.J. and Brown H.D. 1991. Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc. Natl. Acad. Sci. USA 88: 4494–4497.

    Google Scholar 

  • Slatkin M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 778–792.

    Google Scholar 

  • Slatkin M. and Barton N.H. 1989. A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43: 1349–1368.

    Google Scholar 

  • Sneath P.H. and Sokal R.M. 1973. Numerical Taxonomy. The Principles and Practice of Numerical Classifications. Freeman, San Francisco.

    Google Scholar 

  • Sun G.L., Salomon B. and von Bothmer R. 1997. Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome 40: 806–814.

    Google Scholar 

  • Sun G.L., Salomon B. and von Bothmer R. 1998a. Characterization and analysis of microsatellite loci in Elymus caninus (Triticeae:Poaceae). Theor. Appl. Genet. 96: 676–682.

    Google Scholar 

  • Sun G.L., Salomon B. and von Bothmer R. 1998b. Characterization of microsatellite loci from Elymus alaskanus and length polymorphism in several Elymus species (Triticeae:Poaceae). Genome 41: 445–463.

    Google Scholar 

  • Sun G.L., Díaz O., Salomon B. and von Bothmer R. 1999a. Microsatellite variation and its comparison with allozyme and RAPD variation in Elymus fibrosus (Schrenk) Tzvel. (Poaceae). Hereditas 129: 275–282.

    Google Scholar 

  • Sun G.L., Díaz O., Salomon B. and von Bothmer R. 1999b. Genetic diversity in Elymus caninus as revealed by isozyme, RAPD and microsatellite markers. Genome 42: 420–431.

    Google Scholar 

  • Svitashev S., Salomon B., Bryngelsson T. and von Bothmer R. 1996. A study of 28 Elymus species using repetitive DNA sequences. Genome 39: 1093–1101.

    Google Scholar 

  • Svitashev S., Bryngelsson T., Li X. and Wang R.R.-C. 1998. Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus. Genome 41: 120–128.

    Google Scholar 

  • Swofford D.L. and Selander R.B. 1989. BIOSYS-1: A computer program for the analysis of the allelic variation in population genetics and biochemical systematics. DL Swofford, Release 1–7 Illinois Nat. Survey, Champaign, II.

  • Tao Y., Maners J.M., Ludlow M.M. and Hanzel R.G. 1993. DNA polymorphism in grain sorghum (Sorghum bicolor L. Moench). Theor. Appl. Genet. 86: 679–688.

    Google Scholar 

  • Tassannkajon A., Pongsomboon S., Rimphanitchayakit V., Jarayabhand P. and Boonsaeng V. 1997. Random amplified polymorphic DNA (RAPD) for the determination of genetic variation in wild populations of the Black tiger prawn (Penaeus Monodon) in Thailand. Molec. Mar. Biol. Biotech. 6: 110–115.

    Google Scholar 

  • Tzvelev N.N. 1976. Tribe 3. Triticeae Dumort. In: Fedorov A.A. (ed.), Poaceae, URSS Leningrad. Nauka Publishing House, pp. 147–181.

  • Wang C., Scoles G., Hucl P. and Chibbar R.N. 1999. The use of RAPD analysis to classify Triticum accessions. Theor. Appl. Genet. 98: 602–607.

    Google Scholar 

  • Wei J.Z. and Wang R.R.-C. 1995. Genome and species-specific markers and genome relationships of diploid perennial species in Triticeae based on RAPD analyses. Genome 38: 1230–1236.

    Google Scholar 

  • Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A. and Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nuc. Acids Res. 18: 6531–6535.

    Google Scholar 

  • Williams J.G.K., Hanafey M.K., Rafalski J.A. and Tingey S.V. 1993. Genetic analysis using RAPD markers. Methods Enzymol. 218: 704–740.

    Google Scholar 

  • Wolf K. and Morgan-Richards M. 1998. PCR markers distinguish Plantago major subspecies. Theor. Appl. Genet. 96: 282–286.

    Google Scholar 

  • Zhou Y.H., Zheng Y.L., Yang J.L., Yen C. and Jia J.Z. 1999. Phylogenetic relationships among ten Elymus species based on random amplified polymorphic DNA. Acta Phytotaxonomica Sinica 37: 425–432.

    Google Scholar 

  • Zhang X.-Q., Salomon B., von Bothmer R. and Díaz O. 2000. Patterns and levels of genetic differentiation in North American populations of the Alaskan wheatgrass complex. Hereditas 133: 123–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Salomon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XQ., Salomon, B. & von Bothmer, R. Application of random amplified polymorphic DNA markers to evaluate intraspecific genetic variation in the Elymus alaskanus complex (Poaceae). Genetic Resources and Crop Evolution 49, 399–409 (2002). https://doi.org/10.1023/A:1020663416938

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020663416938

Navigation