Skip to main content
Log in

Spray Penetration in a Turbulent Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Analytical expressions for mass concentration of liquid fuel in a spray are derived taking into account the effects of gas turbulence, and assuming that the influence of droplets on gas is small (intitial stage of spray development). Beyond a certain distance the spray is expected to be fully dispersed. This distance is identified with the maximum spray penetration. Then the influence of turbulence on the spray stopping distance is discussed and the rms spray penetration is computed from a trajectory (Lagrangian) approach. Finally, the problem of spray penetration is investigated in a homogeneous two-phase flow regime taking into account the dispersion of spray away from its axis. It is predicted that for realistic values of spray parameters the spray penetration at large distances from the nozzle is expected to be proportional to t 2/3 (in the case when this dispersion is not taken into account this distance is proportional to t 1/2). The t 2/3 law is supported by experimental observations for a high pressure injector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crowe, C.T., Review-Numerical models for dilute gas-particle flows. ASME J. Fluids Engrg. 104 (1982) 297-303.

    Article  Google Scholar 

  2. Crowe, C.T., On models for turbulence modulation in fluid-particle flows. Internat. J. Multiphase Flow 26 (2000) 719-727.

    Article  MATH  Google Scholar 

  3. Stock, D.E., Particle dispersion in flowing gases. ASME J. Fluids Engrg. 118 (1996) 4-17.

    Google Scholar 

  4. Lefebvre, A., Atomization and Sprays. Taylor and Francis, Washington (1989).

    Google Scholar 

  5. Rietz, R. and Krieger, R. (eds), Fuel Spray Studies. Society of Automotive Engineers, Warrendale, PA (1997).

    Google Scholar 

  6. Siebers, D.L., Liquid-phase fuel penetration in Diesel sprays. SAE Technical Report 980809 (1998).

  7. Siebers, D.L., Scaling liquid-phase fuel penetration in Diesel sprays based on mixing-limited vaporization. SAE Technical Report 1999-01-0528 (1999).

  8. Sazhin, S.S., Feng, G. and Heikal, M.R., A model for spray penetration. Fuel 80(15) (2001) 2171-2180.

    Article  Google Scholar 

  9. Savich, S., Spray dynamics and in-cylinder air motion. Ph.D. Thesis, The University of Brighton (2001).

  10. Simonin, O., Deutsch, E. and Minier, J.-P., Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows. Appl. Sci. Res. 51 (1993) 275-283.

    Article  MATH  Google Scholar 

  11. Csanady G.T., Turbulent Diffusion in the Environment. D. Reidel, Dordrecht (1973).

    Google Scholar 

  12. Minier, J.-P. and Peirano, E., The PDF approach to turbulent polydispersed two-phase flows. Phys. Rep. 352 (2001) 1-214.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Maxey, M.R. and Riley, J.J., Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (1983) 883-889.

    Article  MATH  ADS  Google Scholar 

  14. Pozorski, J. and Minier, J.-P., PDF modeling of dispersed two-phase turbulent flows. Phys. Rev. E 59 (1999) 855-863.

    Article  ADS  Google Scholar 

  15. Pozorski, J., Numerical simulation of dispersed phase motion in turbulent two-phase flow. Doctoral Thesis, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gda´nsk (1995).

    Google Scholar 

  16. Ghosh, S. and Hunt, J.C.R., Induced air velocity within droplet driven sprays. Proc. Roy. Soc. London A 444 (1994) 105-127.

    Article  ADS  Google Scholar 

  17. Pope, S.B., Lagrangian PDF methods for turbulent flows. Ann. Rev. Fluid Mech. 26 (1994) 23-63.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Pozorski, J. and Minier, J.-P., On the Lagrangian turbulent dispersion models based on the Langevin equation. Internat J. Multiphase Flow 24 (1998) 913-945.

    Article  MATH  Google Scholar 

  19. Eaton, J.K. and Fessler, J.R., Preferential concentration of particles by turbulence. Internat. J. Multiphase Flow 20 (1994) 169-209.

    Article  MATH  Google Scholar 

  20. Hainaux, F., Aliseda, A., Cartellier, A. and Lasheras, J.C., Settling velocity and clustering of particles in an homogeneous and isotropic turbulence. In: Dopazo, C. (ed.), Advances in Turbulence VIII. CIMNE (International Center for Numerical Methods in Engineering), Barcelona (2000) pp. 553-556.

    Google Scholar 

  21. Dávila, J. and Hunt, J.C.R., Settling of small particles near vortices and in turbulence. J. Fluid Mech. 440 (2001) 117-145.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Maxey, M.R., The motion of small spherical particles in a cellular flow field. Phys. Fluids 30 (1987) 1915-1928.

    Article  ADS  Google Scholar 

  23. Maxey, M.R., The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174 (1987) 441-465.

    Article  MATH  ADS  Google Scholar 

  24. Wang, L.P. and Maxey, M.R., Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256 (1993) 27-68.

    Article  ADS  Google Scholar 

  25. Naber, J.D. and Siebers, D.L., Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Report 960034 (1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozorski, J., Sazhin, S., Wacławczyk, M. et al. Spray Penetration in a Turbulent Flow. Flow, Turbulence and Combustion 68, 153–165 (2002). https://doi.org/10.1023/A:1020497028986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020497028986

Navigation