Skip to main content
Log in

Design and Characterization of Liposomes Containing Long-Chain N-AcylPEs for Brain Delivery: Penetration of Liposomes Incorporating GM1 into the Rat Brain

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To develop a suitable liposomal carrier to encapsulate neu- roactive compounds that are stable enough to carry them to the brain across the blood-brain barrier with the appropriate surface characteristics for an effective targeting and for an active membrane transport.

Methods. Liposomes containing glycosides and a fusogenic lipid were prepared by extrusion. Photon correlation spectroscopy, fluorescence spectroscopy, and differential scanning calorimetry were used to characterize liposomal preparations. Tissue distribution was determined by using 3H-cholesterylhexadecylether as a marker.

Results. The incorporation of glycoside determinants and N-palmitoylphosphatidylethanolamine gives liposomes with similar initial size, trapped volume, negative surface charge, bilayer fluidity, and melting temperature, except for monosialoganglioside-containing liposomes, which showed less negative surface charge and the highest size, trapped volume and melting temperature. All glycosilated formulations gave liposomes able to retain up to the 95% of encapsulated carboxyfluorescein after 90 min at physiologic temperature even in the presence of serum. Monosialoganglioside liposomes were recovered in the cortex, basal ganglia, and mesencephalon of both brain hemispheres. The liver uptake was higher for sulfatide- and glucose-liposomes, whereas the higher blood levels were observed for glucose- and mannose-liposomes.

Conclusions. These results show the suitability of such liposomal formulations to hold encapsulated drugs. Moreover, the brain uptake of monosialoganglioside liposomes makes them good candidates as drug delivery systems to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. M. Pardridge. New approaches to drug delivery through the blood brain barrier. Trends Biotechnol. 12:239-245 (1994).

    Google Scholar 

  2. W. H. Oldendorf and J. Szabo. Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am.J.Physiol. 230:94-98 (1976).

    Google Scholar 

  3. A. Gjedde. High-and low-affinity transport of D-glucose from blood to brain. J.Neurochem. 36:1463-1471 (1981).

    Google Scholar 

  4. W. A. Jefferies, M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter, and D. Y. Mason. Transferrin receptors on endothelium of brain capillaries. Nature 312:162-163 (1984).

    Google Scholar 

  5. A. J. Kastin, W. Pan, L. M. Maness, and W. A. Banks. Peptides crossing the blood-brain barrier: some unusual observations. Brain Res. 848:96-100 (1999).

    Google Scholar 

  6. R. A. Kroll and A. A. Neuwelt. Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means. Neurosurgery 42:1083-1100 (1998).

    Google Scholar 

  7. A. Prokop. Bioartificial organs in the twenty-first century: Nanobiological devices. Ann.NY Acad.Sci. 944:472-490 (2001).

    Google Scholar 

  8. D. Papahadjopoulos, T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc.Natl.Acad.Sci.USA 88:11460-11464 (1991).

    Google Scholar 

  9. F. P. Bonina, L. Arenare, F. Palagiano, A. Saija, F. Nava, D. Trombetta, and P. Caprariis. Synthesis, stability and pharmacological evaluation of nipecotic acid prodrugs. J.Pharm.Sci. 88:561-567 (1999).

    Google Scholar 

  10. R. D. Egleton, S. A. Mitchell, J. D. Huber, J. Janders, D. Stropova, R. Polt, H. I. Yamamura, V. J. Hruby, and T. P. Davis. Improved bioavailability to the brain of glycosylated Metenkephalin analogs. Brain Res. 881:37-46 (2000).

    Google Scholar 

  11. S. Kawakami, J. Wong, A. Sato, Y. Hattori, F. Yamashita, and M. Hashida. Biodistribution characteristics of mannosylated, fucosylated and galactosylated liposomes in mice. Biochim.Biophys.Acta 1524:258-265 (2000).

    Google Scholar 

  12. F. Umezawa and Y. Eto. Liposome targeting to mouse brain: mannose as a recognition marker. Biochim.Biophys.Res.Commun. 153:1038-1044 (1988).

    Google Scholar 

  13. T. Shangguan, C. C. Pak, S. Ali, A. S. Janoff, and P. Meers. Cation-dependent fusogenicity of an N-acyl phosphatidylethanolamine. Biochim.Biophys.Acta 1368:171-183 (1998).

    Google Scholar 

  14. K. Kono, M. Iwamoto, R. Nishikawa, H. Yanagie, and T. Takagishi. Design of fusogenic liposomes using a poly(ethylene glycol) derivative having amino grups. J.Control.Release 68:225-235 (2000).

    Google Scholar 

  15. H. Haller, C. Maasch, D. Dragun, M. Wellner, M. Vonjantalipinski, and F. C. Luft. Antisense oligodesoxynucleotide strategies in renal and cardiovascular disease. Kidney Int. 53:1550-1558 (1998).

    Google Scholar 

  16. C. Puyal, L. Maurin, G. Miruel, A. Bienvenüe, and J. Philippot. Design of a short membrane-destabilizing peptide covalently bound to liposomes. Biochim.Biophys.Acta 1195:259-266 (1994).

    Google Scholar 

  17. M. Mora, F. Mir, M. A. De Madariaga, and M. L. Sagristá. Aggregation and fusion of vesicles composed of N-palmitoyl derivatives of membrane phospholipids. Lipids 35:513-524 (2000).

    Google Scholar 

  18. J. C. Domingo, M. Mora, and M. A. De Madariaga. Incorporation of N-acylethanolamine pohospholipids into egg phosphatidylcholine vesicles: characterization and permeability properties of the binary systems. Biochim.Biophys.Acta 1148:308-316 (1993).

    Google Scholar 

  19. M. Mercadal, J. C. Domingo, M. Bermúdez, M. Mora, and M. A. De Madariaga. N-Palmitoylphosphatidylethanolamine stabilizes liposomes in the presence of human serum: Effect of lipidic composition and system characterization. Biochim.Biophys.Acta 1235:281-288 (1995).

    Google Scholar 

  20. G. Rouser, A. N. Siakotos, and S. Fleischer. Quantitative analysis of phospholipids by thin layer chromatography and phosphorus analysis of spots. Lipids 1:85-86 (1966).

    Google Scholar 

  21. M. L. Sagristá, M. Bermúdez, M. A. De Madariaga, and M. Mora. N-acylaminophospholipids give negative charge and fusogenic properties to lipid bilayers. Use of N-palmitoylphosphatidylethanolamine to obtain long-circulating and fusogenic liposomes to encapsulate tuberculostatic drugs. In: S. G. Pandalai (ed.), Recent Research Development in Lipids Research, Vol. 3. Transworld Research Network, Trivandrum, India, 1999, pp. 127-158.

    Google Scholar 

  22. J. C. M. Stewart. Colorimetric determination of phospholipids with ammonium ferrocyanate. Anal.Biochem. 104:10-14 (1980).

    Google Scholar 

  23. J. N. Weinstein, E. Ralston, L. D. Leserman, R. D. Klausner, P. Dragsten, P. Henkart, and R. Blumental. Self-quenching of carboxyfluorescein fluorescence: uses in studying liposome stability and liposome cell interaction. In: G. Gregoriadis (ed.), Liposome Technology, Vol. 3, CRC Press, Boca Raton, Florida 1984, pp. 183-204.

    Google Scholar 

  24. J. C. Domingo, F. Rosell, M. Mora, and M. A. De Madariaga. Importance of the purification grade of 5(6)-carboxyfluorescein on the stability and permeability properties of N-acylphosphatidylethanolamine liposomes. Biochem.Soc.Trans. 17:997-999 (1989).

    Google Scholar 

  25. A. Saija, P. Princi, M. Lanza, M. Scalese, E. Aramnejad, and A. De Sarro. Systemic cytokine administration can affect bloodbrain barrier permeability in the rat. Life Sci. 56:775-784 (1995).

    Google Scholar 

  26. K. Hoshiyama, A. Nagayasa, Y. Yamagiwa, T. Nishida, H. Harashima, and H. Kiwada. Effects of the size and fluidity of liposomes on their accumulation in tumors: A presumption of their interaction with tumors. Int.J.Pharmaceutics 121:195-203 (1995).

    Google Scholar 

  27. M. Bermúdez, E. Martí´nez, M. Mora, M. L. Sagristá, and M. A. De Madariaga. Molecular and physicochemical aspects of the interactions of the tuberculostatics ofloxacin and rifampicin with liposomal bilayers: A 31P-NMR and DSC study. Colloids Surf. 158:59-66 (1999).

    Google Scholar 

  28. J. M. Wells, R. F. Ventura, P. B. Eisenhauer, D. C. McKenna, R. E. Fine, and M. D. Ullman. Transport of GM1 and GM1 inner ester across an in vitro model of the blood-brain barrier. Neurosci.Lett. 217:121-124 (1996).

    Google Scholar 

  29. Y. Hattori, S. Kawakami, F. Yamashita, and M. Hashida. Controlled biodistribution of galactosylated liposomes and incorporated probucol in hepatocyte-selective drug targeting. J.Control.Release 69:369-377 (2000).

    Google Scholar 

  30. D. Chen and K. H. Lee. Biodistribution of calcitonin encapsulated in liposomes in mice with particular reference to the central nervous system. Biochim.Biophys.Acta 1158:244-250 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Saija.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora, M., Sagristá, ML., Trombetta, D. et al. Design and Characterization of Liposomes Containing Long-Chain N-AcylPEs for Brain Delivery: Penetration of Liposomes Incorporating GM1 into the Rat Brain. Pharm Res 19, 1430–1438 (2002). https://doi.org/10.1023/A:1020440229102

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020440229102

Navigation