Skip to main content
Log in

Formation of Plasmid-Based Transfection Complexes with an Acid-Labile Cationic Lipid: Characterization of in Vitro and in Vivo Gene Transfer

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study tests the hypothesis that gene transfer efficiency may be improved through the use of transiently stable transfection complexes that degrade within endosomal compartments and promote plasmid escape into the cytosol.

Method. An acid labile cationic lipid, O-(2R-1,2-di-O-(1`Z, 9`Z-octadecadienyl)-glycerol)-3-N-(bis-2-aminoethyl)-carbamate (BCAT), was designed, synthesized, and tested for enhanced gene transfer activity relative to non-labile controls.

Results. The O-alkenyl chains of BCAT were completely hydrolyzed after 4 h incubation in pH 4.5 buffer at 25°C. Addition of BCAT to plasmid DNA in 40%ethanol followed by ethanol evaporation yielded transfection complexes that transfected several cell types in the presence of fetal calf serum and without the need of a helper lipid. Transfection complexes prepared from BCAT displayed higher luciferase expression than the corresponding DCAT complexes (an acid-insensitive derivative of BCAT) for all cell types tested. Uptake studies showed that this increase was not due to a difference in the amount of DNA being delivered. FACS analysis for GFP expression showed that BCAT transfection complexes yielded 1.6 more transfected cells and 20%higher log mean fluorescence than DCAT transfection complexes. In vivo gene transfer was demonstrated in subcutaneous tumor-bearing mice by systemic administration of a 60 μg plasmid dose. Expression was observed in the lungs and in the tumor, with the highest activity being observed in the lungs.

Conclusions. Our results show that increased transfection can be obtained by coupling the cationic headgroup to the hydrophobic amphiphilic tails via acid-labile bonds. Acid-catalyzed release of the alkyl chains should facilitate dissociation of the cationic lipid headgroup from the plasmid, thus accelerating one of the rate-limiting steps in cationic lipid mediated transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. S. Horwitz. Adenoviridae and Their Replication. Raven Press, New York, 1990.

    Google Scholar 

  2. A. P. Rolland. From genes to gene medicines: recent advances in nonviral gene delivery. Crit. Rev. Ther. Drug Carrier Sys. 15:143–198 (1998).

    Google Scholar 

  3. K. Anwer, A. Bailey, and S. M. Sullivan. Targeted gene delivery: a two-pronged approach. Crit. Rev. Ther. Drug Carrier Sys. 17:377–424 (2000).

    Google Scholar 

  4. A. D. Miller. Human gene-therapy comes of age. Nature 357:455–460 (1992).

    Google Scholar 

  5. A. V. Kabanov and V. A. Kabanov. DNA complexes with polycations for the delivery of genetic material into cells. Bioconj. Chem. 6:7–20 (1995).

    Google Scholar 

  6. M. Ibanez, P. Gariglio, P. Chavez, R. Santiago, C. Wong, and I. Baeza. Spermidine condensed DNA and cone-shaped lipids improve delivery and expression of exogenous DNA transfer by liposomes. Biochem. Cell Biol. 74:633–643 (1996).

    Google Scholar 

  7. S. Ferrari, A. Pettenazzo, N. Garbati, F. Zacchello, J. P. Behr, and M. Scarpa. Polyethylenimine shows properties of interest for cystic fibrosis gene therapy. Biochim. Biophys. Acta 1447:219–225 (1999).

    Google Scholar 

  8. P. Erbacher, J. S. Remy, and J. P. Behr. Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway. Gene Ther. 6:138–145 (1999).

    Google Scholar 

  9. B. Abdallah, A. Hassan, C. Benoist, D. Goula, J. P. Behr, and B. A. Demeneix. A powerful nonviral vector for in vivo gene transfer into the adult mammalian brain: polyethylenimine. Human Gene Ther. 7:1947–1954 (1996).

    Google Scholar 

  10. S. Vinogradov, E. Batrakova, S. Li, and A. Kabanov. Polyion complex micelles with protein-modified corona for receptor-mediated delivery of oligonucleotides into cells. Bioconj. Chem. 10:851–860 (1999).

    Google Scholar 

  11. T. K. Bronich, H. K. Nguyen, A. Eisenberg, and A. V. Kabanov. Recognition of DNA topology in reactions between plasmid DNA and cationic copolymers. J. Am. Chem. Soc. 122:8339–8343 (2000).

    Google Scholar 

  12. H.-K. Nguyen, P. Lemieux, S. V. Vinogradov, C. L. Gebhart, N. Guerin, G. Paradis, T. K. Bronich, V. Y. Alakhov, and A. V. Kabanov. Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther. 7:126–138 (2000).

    Google Scholar 

  13. E. Wagner, M. Cotten, R. Foisner, and M. L. Birnstiel. Transferrin polycation DNA complexes-the effect of polycations on the structure of the complex and DNA delivery to cells. Proc. Natl. Acad. Sci. USA 88:4255–4259 (1991).

    Google Scholar 

  14. G. Y. Wu and C. H. Wu. Evidence for targeted gene delivery to Hep G2 hepatoma-cells in vitro. Biochemistry 27:887–892 (1988).

    Google Scholar 

  15. S. Li, M. A. Rizzo, S. Bhattacharya, and L. Huang. Characterization of cationic lipid-protamine-DNA (LPD) complexes for intravenous gene delivery. Gene Ther. 5:930–937 (1998).

    Google Scholar 

  16. F. L. Sorgi, S. Bhattacharya, and L. Huang. Protamine sulfate enhances lipid-mediated gene transfer. Gene Ther. 4:961–968 (1997).

    Google Scholar 

  17. O. Zelphati, X. W. Liang, P. Hobart, and P. L. Felgner. Gene chemistry: functionally and conformationally intact fluorescent plasmid DNA. Human Gene Ther. 10:15–24 (1999).

    Google Scholar 

  18. D. Singh, S. K. Bisland, K. Kawamura, and J. Gariepy. Peptide-based intracellular shuttle able to facilitate gene transfer in mammalian cells. Bioconj. Chem. 10:745–754 (1999).

    Google Scholar 

  19. C. Ben Mamoun, R. Truong, I. Gluzman, N. S. Akopyants, A. Oksman, and D. E. Goldberg. Transfer of genes into Plasmodium falciparum by polyamidoamine dendrimers. Mol. Biochem. Parasitol. 103:117–121 (1999).

    Google Scholar 

  20. T. Hudde, S. A. Rayner, R. M. Comer, M. Weber, J. D. Isaacs, H. Waldmann, D. P. F. Larkin, and A. J. T. George. Activated polyamidoamine dendrimers, a non-viral vector for gene transfer to the corneal endothelium. Gene Ther. 6:939–943 (1999).

    Google Scholar 

  21. A. D. Miller. Cationic liposomes for gene therapy. Angew. Chem., Int. Ed. 37:1769–1785 (1998).

    Google Scholar 

  22. A. Chonn and P. R. Cullis. Recent advances in liposome technologies and their applications for systemic gene delivery. Adv. Drug Delivery Rev. 30:73–83 (1998).

    Google Scholar 

  23. K. W. C. Mok, A. M. I. Lam, and P. R. Collis. Stabilized plasmidlipid particles: factors influencing plasmid entrapment and transfection properties. Biochim. Biophys. Acta 1419:137–150 (1999).

    Google Scholar 

  24. G. Byk, C. Dubertret, V. Escriou, M. Frederic, G. Jaslin, R. Rangara, B. Pitard, J. Crouzet, P. Wils, B. Schwartz, and D. Scherman. Synthesis, activity, and structure-activity relationship studies of novel cationic lipids for DNA transfer. J. Med. Chem. 41:224–235 (1998).

    Google Scholar 

  25. R. G. Cooper, C. J. Etheridge, L. Stewart, J. Marshall, S. Rudginsky, S. H. Cheng, and A. D. Miller. Polyamine analogues of 3 ?-[N-(N', N'-dimethylaminoethane)carbomoyl]cholesterol (DC-Chol) as agents for gene delivery. Chem. Eur. J. 4:137–151 (1998).

    Google Scholar 

  26. J. S. Remy, C. Sirlin, P. Vierling, and J. P. Behr. Gene-transfer with a series of lipophilic DNA-binding molecules. Bioconj. Chem. 5:647–654 (1994).

    Google Scholar 

  27. J. H. Felgner, R. Kumar, C. N. Sridhar, C. J. Wheeler, Y. J. Tsai, R. Border, P. Ramsey, M. Martin, and P. L. Felgner. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations. J. Bio. Chem. 269:2550–2561 (1994).

    Google Scholar 

  28. M. B. Bally, P. Harvie, F. M. P. Wong, S. Kong, E. K. Wasan, and D. L. Reimer. Biologic barriers to cellular delivery of lipid-based DNA carriers. Adv. Drug Del. Rev. 38:291–315 (1999).

    Google Scholar 

  29. J. Zabner, A. J. Fasbender, T. Moninger, K. A. Poellinger, and M. J. Welsh. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Bio. Chem. 270:18977–19007 (1995).

    Google Scholar 

  30. S. C. Davis and F. C. Szoka. Conditionally stable liposomes for gene delivery. ACS Symp. Ser. 728:179–189 (1999).

    Google Scholar 

  31. C. C. Pak, S. Ali, A. S. Janoff, and P. Meers. Triggerable liposomal fusion by enzyme cleavage of a novel peptide-lipid conjugate. Biochim. Biophys. Acta 1372:13–27 (1998).

    Google Scholar 

  32. F. Tang and J. A. Hughes. Introduction of a disulfide bond into a cationic lipid enhances transgene expression of plasmid DNA. Biochem. Biophys. Res. Comm 242:141–145 (1998).

    Google Scholar 

  33. F. Tang and J. A. Hughes. Use of dithioglycolic acid as a tether for cationic lipids decreases the cytotoxicity and increases transgene expression of plasmid DNA in vitro. Bioconj. Chem. 10:791–796 (1999).

    Google Scholar 

  34. F. Tang, W. Wang, and J. A. Hughes. Cationic liposomes containing disulfide bonds in delivery of plasmid DNA. J. Liposome Res. 9:331–347 (1999).

    Google Scholar 

  35. A. M. Aberle, F. Tablin, J. Zhu, N. J. Walker, D. C. Gruenert, and M. H. Nantz. A novel tetraester construct that reduces cationic lipid-associated cytotoxicity. Implications for the onset of cytotoxicity. Biochemistry 37:6533–6540 (1998).

    Google Scholar 

  36. S. Obika, W. Yu, A. Shimoyama, T. Uneda, T. Minami, K. Miyashita, T. Doi, and T. Imanishi. Properties of cationic liposomes composed of cationic lipid YKS-220 having an ester linkage: adequate stability, high transfection efficiency, and low cytotoxicity. Bio. Pharm. Bull. 22:187–190 (1999).

    Google Scholar 

  37. J. Y. Legendre and F. C. Szoka. Delivery of plasmid DNA into mammalian-cell lines using pH-sensitive liposomes-comparison with cationic liposomes. Pharm. Res. 9:1235–1242 (1992).

    Google Scholar 

  38. Y. Rui, S. Wang, P. S. Low, and D. H. Thompson. Diplasmenylcholine-folate liposomes: an efficient vehicle for intracellular drug delivery. J. Am. Chem. Soc. 120:11213–11218 (1998).

    Google Scholar 

  39. M. M. Qualls and D. H. Thompson. Synergistic phototoxicity of chloroaluminum phthalocyanine tetrasulfonate delivered via acid-labile diplasmenylcholine-folate liposomes. Int. J. Cancer 93:384–392 (2001).

    Google Scholar 

  40. J. A. Boomer and D. H. Thompson. Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem. Phys. Lipids 99:145–153 (1999).

    Google Scholar 

  41. J. R. Keefe and A. J. Kresge. Chapter title. In Z. Rappoport (ed.), The Chemistry of Enols. Wiley, Chichester, NY, 1990. pp. 399–480.

    Google Scholar 

  42. B. Sternberg, F. L. Sorgi, and L. Huang. New structures in complex-formation between DNA and cationic liposomes visualized by freeze-fracture electron-microscopy. FEBS Lett. 356:361–366 (1994).

    Google Scholar 

  43. O. V. Gerasimov, A. Schwan, and D. H. Thompson. Acid-catalyzed plasmenylcholine hydrolysis and its effect on bilayer permeability: a quantitative study. Biochim. Biophys. Acta 1324:200–214 (1997).

    Google Scholar 

  44. J. O. Radler, I. Koltover, T. Salditt, and C. R. Safinya. Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275:810–814 (1997).

    Google Scholar 

  45. O. Zelphati and F. C. Szoka. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl. Acad. Sci. USA 93:11493–11498 (1996).

    Google Scholar 

  46. Y. H. Xu and F. C. Szoka. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623 (1996).

    Google Scholar 

  47. K. Anwer, C. Meaney, G. Kao, R. Shelvin, R. M. Earls, P. Leonard, A. P. Rolland, and S. M. Sullivan. J. Drug Target. 8:125–135 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boomer, J.A., Thompson, D.H. & Sullivan, S.M. Formation of Plasmid-Based Transfection Complexes with an Acid-Labile Cationic Lipid: Characterization of in Vitro and in Vivo Gene Transfer. Pharm Res 19, 1292–1301 (2002). https://doi.org/10.1023/A:1020342523694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020342523694

Navigation