Skip to main content
Log in

An update on nutrient transport processes in ectomycorrhizas

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Nutrient transport, namely absorption from the soil solution as well as nutrient transfer from fungus to plant and carbon movement from plant to fungus are key features of mycorrhizal symbiosis. This review summarizes our current understanding of nutrient transport processes in ectomycorrhizal fungi and ectomycorrhizas. The identification of nutrient uptake mechanisms is a key issue in understanding nutrition of ectomycorrhizal plants. With the ongoing functional analysis of nutrient transporters, identified during sequencing of fungal and tree genomes, a picture of individual transport systems should be soon available, with their molecular functions assessed by functional characterization in, e.g., yeast mutant strains or Xenopus oocytes. Beyond the molecular function, systematic searches for knockout mutants will allow us to obtain a full understanding of the role of the individual transporter genes in the physiology of the symbionts. The mechanisms by which fungal and plant cells obtain, process and integrate information regarding nutrient levels in the external environment and the plant demand will be analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashford A E 1998 Dynamic pleiomorphic vacuole systems: Are they endosomes and transport compartments in fungal hyphae? Adv. Bot. Res. 28, 119-159.

    Google Scholar 

  • Ashford A E and Allaway W G, 2002 The role of a motile tubular vacuole system in mycorrhizal fungi. Plant Soil 244, 179-189 (this issue).

    Google Scholar 

  • Altschul S F, Gish W, Miller W, Myers E W and Lipman D J 1990 Basic local alignment search tool. J. Mol. Biol. 215, 403-410.

    Google Scholar 

  • Bago B, Pfeffer P and Shachar-Hill Y 2001 Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol. 149, 4-8.

    Google Scholar 

  • Bending g D and Read D J 1995 The structure and function of the vegetative mycelium of ectomycorrhizal plants. VI. Activities of nutrient mobilizing enzymes in birch litter colonized by Paxillus involutus (Fr.) Fr. New Phytol. 130, 411-417.

    Google Scholar 

  • Blaudez D, Botton B, Dizengremel P and Chalot M 2001 The fate of [14C]glutamate and [14C]malate in birch roots is strongly modified under inoculation with Paxillus involutus. Plant Cell Environ. 24, 449-457.

    Google Scholar 

  • Bücking H and Heyser W 2000a Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. I. The distribution of phosphate. New Phytol. 145, 311-320.

    Google Scholar 

  • Bücking H and Heyser W 2000b Subcellular compartmentation of elements in non-mycorrhizal and mycorrhizal roots of Pinus sylvestris: an X-ray microanalytical study. II. The distribution of calcium, potassium and sodium. New Phytol. 145, 321-331.

    Google Scholar 

  • Buscot A, Munch J C, Charcosset J Y, Gardes M, Nehls U and Hampp R 2000 Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol. Rev. 24, 601-614.

    Google Scholar 

  • Cairney J W G and Smith S E 1993 Efflux of phosphate from the ectomycorrhizal basidiomycete Pisolithus tinctorius: general characteristics and the influence of intracellular phosphate. Mycol. Res. 96, 673-676.

    Google Scholar 

  • Chalot M and Brun A 1998 Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol. Rev. 22, 21-44.

    Google Scholar 

  • Chalot M, Brun A, Botton B and Söderström B 1996 Kinetics, energetics and specificity of the general amino acid transporter from the ectomycorrhizal fungus Paxillus involutus. Microbiology 142, 1749-1756.

    Google Scholar 

  • Cole L, Orlovich D A and Ashford A E 1998 Structure, function, and, motility of vacuoles in filamentous fungi. Fungal Genet. Biol. 24, 86-100.

    Google Scholar 

  • Colpaert J V, van Tichelen K K, van Assche J A and Van Laere A 1999 Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytol. 143, 589-597.

    Google Scholar 

  • Debaud J C and Gay G 1987 In vitro fruiting under controlled conditions of the ectomycorrhizal fungus Hebeloma cylindrosporum associated with Pinus pinaster. New Phytol. 105, 429-435.

    Google Scholar 

  • Delrot S, Atanassova R and Maurousset L 2000 Regulation of sugar, amino acid and peptide plant membrane transporters. Biochim. Biophys. Acta 1465, 281-306.

    Google Scholar 

  • Emmerton K S, Callaghan T V, Jones H E, Leake J R, Michelsen A and Read D J 2001 Assimilation and isotopic fractionation of nitrogen by mycorrhizal fungi. New Phytol. 151, 503-512.

    Google Scholar 

  • Evans R D 2001 Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 6, 121-126.

    Google Scholar 

  • Fischer W N, André B, Rentsch D, Krolkiewicz S, Tegeder M, Breitkreuz K and Frommer W B 1998 Amino acid transport in plants. Trends Plant Sci. 3, 188-195.

    Google Scholar 

  • Gordon C L, Khalaj V, Ram A F, Archer D B, Brookman J L, Trinci A P, Jeenes D J, Doonan J H, Wells B, Punt P J, van den Hondel C A, Robson G D 2000 Glucoamylase::green fluorescent protein fusions to monitor protein secretion in Aspergillus niger. Microbiology 146, 415-26.

    Google Scholar 

  • Hampp R, Wiese J, Mikolajewski S and Nehls U 1999 Biochemical and molecular aspects of C/N interaction in ectomycorrhizal plants: an update. Plant Soil 215, 103-113.

    Google Scholar 

  • Hobbie E A, Macko S A and Shugart H H 1999 Interpretation of nitrogen isotope signatures using the NIFTE model. Oecologia 120, 405-415.

    Google Scholar 

  • Javelle A, Chalot M, Söderström B, and Botton B 1999 Ammonium and methylamine transport by the ectomycorhizal fungus Paxillus involutus and ectomycorrhizas. FEMS Microbiol. Ecol. 30, 355-366.

    Google Scholar 

  • Javelle A, Rodríguez-Pastrana B R, Jacob C, Botton B, Brun A, André B, Marini A M and Chalot M 2001 Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett. 505: 393-398.

    Google Scholar 

  • Jentschke G, Brandes B, Kuhn A J, Schröder WH and Godbold D L 2001a Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytol. 149, 327-338.

    Google Scholar 

  • Jentschke G, Brandes B, Kuhn A J, Schröder W H, Becker J S and Godbold D L 2000 The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220, 243-246.

    Google Scholar 

  • Jentschke G, Godbold D L and Brandes B 2001b Nitrogen limitation in mycorrhizal Norway spruce (Picea abies) seedlings induced mycelial foraging for ammonium: implications for Ca and Mg uptake. Plant Soil 234, 109-117.

    Google Scholar 

  • Jongbloed R H, Clement J M A M and Borst-Pauwels G W F H 1991 Kinetics of K+ uptake by ectomycorrhizal fungi. Effect of NH4 + on K+ uptake. Physiol. Plant. 83, 427-432.

    Google Scholar 

  • Jones M D, Durall D M and Tinker P B 1998 Comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol. 140, 125-134.

    Google Scholar 

  • Koide R T and Kabir Z 2001 Nutrient economy of red pine is affected by interactions between Pisolithus tinctorius and other forest-floor microbes. New Phytol. 150, 179-188.

    Google Scholar 

  • Kreuzwieser J, Herschbach C, Stulen I, Wiersema P, Vaalburg W and Rennenberg H 1997 Interactions of NH4 + and L-glutamate with NO3 ? transport processes of non-mycorrhizal Fagus sylvatica roots. J. Exp. Bot. 48, 1431-1438.

    Google Scholar 

  • Kreuzwieser J, Stulen I, Wiersema P, Vaalburg W and Rennenberg H 2000 Nitrate transport processes in Fagus-Laccaria-mycorrhizae. Plant Soil 220, 107-117.

    Google Scholar 

  • Kuhn A J, Schröder W H and Bauch J 2000 The kinetics of calcium and magnesium entry into mycorrhizal spruce roots. Planta 210, 488-496.

    Google Scholar 

  • Landeweert R, Hoffland E, Finlay R D, Kuyper T W and van Breemen N 2001 Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16, 248-254.

    Google Scholar 

  • Marini A M, Soussi-Boudekou S, Vissers S and André B 1997 A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 4282-4293.

    Google Scholar 

  • Marini A M, Vissers S, Urrestarazu A and André B 1994 Cloning and expression of theMEP 1 gene encoding an ammonium transporter in Saccharomyces cerevisiae. EMBO J. 13, 3456-3463.

    Google Scholar 

  • Marmeisse R, Gay G, Debaud J C and Casselton L A 1992 Genetic transformation of the symbiotic basidiomycete fungus Hebeloma cylindrosporum. Cur. Genet. 22, 42-45.

    Google Scholar 

  • Marschner H 1995 Mineral Nutrition of Higher Plants, Ed 2, Academic Press, London.

    Google Scholar 

  • Näsholm T and Persson J 2001 Plant acquisition of organic nitrogen in boreal forests. Physiol. Plant. 111, 419-426.

    Google Scholar 

  • Nehls U, Kleber R, Wiese J and Hampp R 1999 Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol. 144, 343-349.

    Google Scholar 

  • Nehls U, Micholajewski S, Magel E and Hampp R 2001 Carbohydrate metabolism in ectomycorrhizas: gene expression, monosaccharide transport and metabolic control. New Phytol. 150, 533-541.

    Google Scholar 

  • Nehls U, Wiese J and Hampp R 2000 Cloning of a Picea abies monosaccharide transporter gene and expression-analysis in plant tissues and ectomycorrhizas. Trees 14, 334-338.

    Google Scholar 

  • Nehls U, Wiese J, Güttenberger M and Hampp R 1998 Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol. Plant Microbe Interact. 11, 167-176.

    Google Scholar 

  • Ninnemann O, Jauniaux J C and Frommer W B 1994 Identification of a high affinity ammonium transporter from plants. EMBO J. 13, 3464-3471.

    Google Scholar 

  • Pardo A G, Hanif M, Raudaskoski M and Gorfer M 2002 Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Mycol. Res. 106, in press.

  • Perez-Moreno J and Read D J 2000 Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol. 145, 301-309.

    Google Scholar 

  • Plassard C, Bonafos B and Touraine B 2000 Differential effects of mineral and organic N sources, and of ectomycorrhizal infection by Hebeloma cylindrosporum, on growth and N utilization in Pinus pinaster. Plant Cell Environ. 23, 1195-1205.

    Google Scholar 

  • Plassard C, Chalot M, Botton, B and Martin F 1997 Le rôle des ectomycorhizes dans la nutrition azotée des arbres forestiers. Rev. For. Fr. 49, 82-98.

    Google Scholar 

  • Plassard C, Reid R J and Tester M 1996 Amino acid release by the ectomycorrhizal fungus Hebeloma cylindrosporum grown in vitro. In Mycorrhizas in integrated systems, from genes to plant development. Eds. C Azcon-Aguilar and J M Barea. pp 364-367. Proceedings of the Fourth European Symposium on Mycorrhizas. European Commission, Brussels, Luxembourg.

    Google Scholar 

  • Rodriguez-Navarro A 2000 Potassium transport in fungi and plants. Biochim. Biophys. Acta 1469, 1-30.

    Google Scholar 

  • Rousseau J V D, Sylvia D M and Fox A J 1994 Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol. 128, 639-644.

    Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis, Ed 2, Academic Press, London.

    Google Scholar 

  • Solomon P S and Oliver R P 2001 The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta 213, 241-249.

    Google Scholar 

  • Tavoularis S, Scazzocchio C, Sophianopoulou V 2001 Functional expression and cellular localization of a green fluorescent protein-tagged proline transporter in Aspergillus nidulans. Fung. Genet. Biol. 33, 115-25.

    Google Scholar 

  • Timonen S, Finlay R D, Olsson S and Söderström B 1996 Dynamics of phosphorus translocation in intact ectomycorrhizal systems: Non-destructive monitoring using a beta-scanner. FEMS Microbiol. Ecol. 19, 171-180.

    Google Scholar 

  • van Belle D and André B 2001 A genomic view of yeast membrane transporters. Cur. Opin. Cell. Biol. 13, 389-398.

    Google Scholar 

  • van Tichelen K K and Colpaert J V 2000 Kinetics of phosphate absorption by mycorrhizal and non-mycorrhizal Scots pine seedlings. Physiol. Plant. 110, 96-103.

    Google Scholar 

  • Vesk P A, Ashford A E, Markovina, A L and Allaway W G 2000 Apoplasmic barriers and their significance in the exodermis and sheath of Eucalyptus pilularis-Pisolithus tinctorius ectomycorrhizas. New Phytol. 145, 333-346.

    Google Scholar 

  • von Wiren N, Gazzarrini S, Gojon A and Frommer W B 2000 The molecular physiology of ammonium uptake and retrieval. Cur. Opin. Plant Biol. 3, 254-261.

    Google Scholar 

  • Wallander H 2000a Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218, 249-256.

    Google Scholar 

  • Wallander H 2000b Use of strontium isotopes and foliar K content to estimate weathering of biotite induced by pine seedlings colonised by ectomycorrhizal fungi from two different soils. Plant Soil 222, 215-229.

    Google Scholar 

  • Wallander H and Wickman T 1999 Biotite and microcline as a K source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9, 25-32.

    Google Scholar 

  • Wallander H, Wickman T and Jacks G 1997 Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 196, 123-131.

    Google Scholar 

  • Wallenda T and Read D J 1999 Kinetics of amino uptake by ectomycorrhizal roots. Plant Cell Environ. 22, 179-187.

    Google Scholar 

  • Wiese J, Kleber R, Hampp R and Nehls U 2000 Functional characterization of the Amanita muscaria monosaccharide transporter AmMST1. Plant Biol. 2, 1-5.

    Google Scholar 

  • Williams L E and Miller A J 2001 Transporters responsible for the uptake and partitioning of nitrogenous solutes. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52, 659-688.

    Google Scholar 

  • Wipf D U Ludewig M, Tegeder D, Rentsch W, Koch, Frommer W B 2002 Amino acid/neurotransmitter transporters are highly conserved between fungi, plants and animals. Trends Biochem. Sci. 27, 139-147.

    Google Scholar 

  • Wright D P, Scholes J D, Read D J and Rolfe S A 2000 Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant Cell Environ. 23, 39-49.

    Google Scholar 

  • Zimmermann S and Sentenac H 1999 Plant ion channels: from molecular structures to physiological functions. Curr. Opin. Plant Biol. 2, 477-82.

    Google Scholar 

  • Zwiers L H and De Waard M A 2001 Efficient Agrobacterium tumefaciens-mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet. 39, 388-393.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Chalot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalot, M., Javelle, A., Blaudez, D. et al. An update on nutrient transport processes in ectomycorrhizas. Plant and Soil 244, 165–175 (2002). https://doi.org/10.1023/A:1020240709543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020240709543

Navigation