Skip to main content
Log in

Thermodynamic Properties of Superfluid 4He at Negative Pressure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We calculate the thermodynamics of superfluid 4He at negative pressures. We use the Landau theory in which thermodynamic properties are expressed as sums over the thermal distribution of elementary excitations. The excitation dispersion curve is taken from the density functional theory developed by Dalfovo et al. To give a good description of the liquid near to the lambda line, we include the interaction between the elementary excitations using a modification of the roton liquid theory of Bedell, Pines, and Fomin. The calculated quantities include the location of the lambda line, the liquid-vapor spinodal, and lines of constant entropy in the pressure-temperature (P-T) plane. We have also calculated the line of minimum density (zero expansion coefficient) in theP-T plane. This joins the lambda line tangentially at about −5.3 bars. Using the critical properties near the lambda line, we find that the line of maximum density in He I also joins the lambda line tangentially at this pressure. For use in cavitation experiments, we have calculated the states on the lambda line reached by isentropic expansion from He I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. For a review, see H. J. Maris, in Proceedings of the 21st International Conference on Low Temperature Physics, Prague, August 1996, Czech. J. Phys. S6, 2943 (1996).

    Google Scholar 

  2. H. J. Maris and S. Balibar, Physics Today 53, 29 (2000).

    Google Scholar 

  3. S. Balibar, C. Guthmann, H. Lambare, P. Roche, E. Rolley, and H. J. Maris, J. Low Temp. Phys. 101, 271 (1995).

    Google Scholar 

  4. S. Balibar, F. Caupin, P. Roche, and H. J. Maris, J. Low Temp. Phys. 113, 459 (1998).

    Google Scholar 

  5. S. Balibar and X. Chavanne, unpublished.

  6. S. C. Hall and H. J. Maris, J. Low Temp. Phys. 107, 263 (1997).

    Google Scholar 

  7. L. D. Landau, J. Phys. Moscow 5, 71 (1941).

    Google Scholar 

  8. G. H. Bauer, D. M. Ceperley, and N. Goldenfeld, Phys. Rev. 61, 9055 (2000).

    Google Scholar 

  9. V. P. Skripov, Zh. Fiz. Khim. 68, 1382 (1994) [Russ. J. Phys. Chem. 68, 1252 (1994); Usp. Fiz. Nauk 170, 559 (2000); Phys.-Uspekhi 43, 515 (2000)].

    Google Scholar 

  10. B. M. Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir, and P. R. Roach, Phys. Rev. A1, 250 (1970).

    Google Scholar 

  11. H. J. Maris, Phys. Rev. A5, 2629 (1973).

    Google Scholar 

  12. Q. Xiong and H. J. Maris, J. Low Temp. Phys. 77, 347 (1989).

    Google Scholar 

  13. H. J. Maris, J. Low Temp. Phys. 94, 111 (1994).

    Google Scholar 

  14. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and J. Treiner, Phys. Rev. B52, 1193 (1995). The equation of state is given in Eq. (13) of this reference. Using the density functional scheme as described there, we have been unable to obtain perfect agreement with the dispersion curve and static response function that they show in their Figs. 1 and 12. For example, we calculate a roton gap that is about 1% higher than shown in their Fig. 12.

    Google Scholar 

  15. The way in which the sound velocity goes to zero as the spinodal is approached is an open question. For alternative viewpoints, see M. A. Solis and J. Navarro, Phys. Rev. 45, 13080 (1992) and C. E. Campbell, R. Folk, and E. Krotscheck, J. Low Temp. Phys. 105, 13 (1996). Different assumptions about the way the sound velocity varies as one approached the spinodal pressure lead to slightly different values of P c.

    Google Scholar 

  16. J. Boronat, J. Casulleras, and J. Navarro, Phys. Rev. B50, 3427 (1994).

    Google Scholar 

  17. See, for example, H. R. Glyde, Excitations in Liquid and Solid Helium, Oxford University Press, Oxford (1994).

    Google Scholar 

  18. A path-integral Monte Carlo calculation of the excitation energy for the single density 0.114 g cm−3 and a temperature of 1 K was performed by Bauer et al. (Ref. 9). They found the energy at the roton minimum to be approximately 1 K lower than in the Dalfovo et al. model. Their result for the maxon energy was also lower. A diffusion Monte-Carlo calculation by J. Boronat and J. Casulleras (J. Low Temp. Phys. 110, 443 (1998)) for a density of 0.113 g cm−3 is also in reasonable agreement with the results shown in Fig. 4. At the minimum, their roton energy is about 2 K above that shown in Fig. 4. The statistical error is about 1 K.

    Google Scholar 

  19. P. J. Bendt, R. D. Cowan, and J. L. Yarnell, Phys. Rev. 113, 1386 (1959).

    Google Scholar 

  20. J. Maynard, Phys. Rev. B14, 3868 (1976).

    Google Scholar 

  21. R. J. Donnelly and P. H. Roberts, J. Low Temp. Phys. 27, 687 (1977).

    Google Scholar 

  22. K. Bedell, D. Pines, and I. Fomin, J. Low. Temp. Phys. 48, 417 (1982).

    Google Scholar 

  23. K. Bedell, D. Pines, and A. Zawadowski, Phys. Rev. B 29, 102 (1984).

    Google Scholar 

  24. K. Fukushima and F. Iseki, Phys. Rev. B 38, 4448 (1988).

    Google Scholar 

  25. G. Ahlers, Phys. Rev. A8, 530 (1973).

    Google Scholar 

  26. H. A. Kierstead, Phys. Rev. 126, 153 (1967).

    Google Scholar 

  27. O. V. Lounasmaa, Cryogenics 1, 1 (1961).

    Google Scholar 

  28. See J. Wilks, The Properties of Liquid and Solid Helium, Oxford, London (1967).

  29. J. S. Brooks and R. J. Donnelly, J. Phys. Chem. Ref. Data 6, 51 (1977).

    Google Scholar 

  30. R. De Bruyn Ouboter and C. N. Yang, in Physica B44, 127 (1987).

    Google Scholar 

  31. See J. A. Lipa, D. R. Swanson, J. A. Nissen, T. C. P. Chui, and U. E. Israelsson, Phys. Rev. Lett. 76, 944 (1996) and the references therein.

    Google Scholar 

  32. M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Phys. Rev. B 61, 5905 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maris, H.J., Edwards, D.O. Thermodynamic Properties of Superfluid 4He at Negative Pressure. Journal of Low Temperature Physics 129, 1–24 (2002). https://doi.org/10.1023/A:1020060700534

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020060700534

Keywords

Navigation