Skip to main content
Log in

Genetic diversity of wheat wild relatives in the Near East detected by AFLP

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

In order to reveal the molecular genetic diversity of wheat wild relatives, an AFLP analysis was conducted with 16 accessions of five Triticum andAegilops species originating from the Near East. Variation within population was studied with at least seven individuals per accession. Four primer combinations were used for selective amplification. Based on the scored bands, we estimated percentage of polymorphic bands, 1 – proportion of shared bands (1-psb) and nucleotide diversity (π). Of the five species used in this study, Ae. speltoides had the highest level of `within population' variation. This species had also the highest value of the variation among populations. As for Triticum species, the level of variation within population was low in diploid species (T. urartu and T. boeoticum),whereas two tetraploid species (T. dicoccoides and T. araraticum) had relatively high levels of variation within population. While the two diploid Triticum indicated a clear interspecific divergence, the two tetraploid wild wheats were not clearly divergent in this study. The variance portioning analysis indicated that the variation detected for diploid Triticum species was mainly composed of `between species' variation, on the other hand that for tetraploid Triticum was mostly composed of `within population' variation. In conclusion, AFLP analysis reveals molecular variation in all accessions used in this study, suggesting a potential genetic diversity of the wheat wild relatives in natural populations. These results have implications for the design of strategies to maintain genetic diversity within genebank collections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Breyne, P., D. Rombaut, A. Van Gysel, M. Van Montagu & T. Gerats, 1999. AFLP analysis of genetic diversity within and between Arabidopsis thaliana ecotypes. Mol Gen Genet 261: 627–634.

    Article  PubMed  CAS  Google Scholar 

  • Castagna, R., G. Maga, M. Perenzin, M. Heun & F. Salamini, 1994. RFLP-based genetic relationships of Einkorn wheat. Theor Appl Genet 88: 818–823.

    Article  CAS  Google Scholar 

  • Chabane, K., R. Kassis & J. Valkoun, 2000. Genetic diversity of Lebanese wild wheat populations revealed by RAPD and AFLP markers. International Conference on Science and Technology for Managing Plant Genetic Diversity. Kuala Lumpur, Malaysia, June 2000.

  • Ciaffi, M., L. Dominici, E. Umana, O.A. Tanzarella & E. Porceddu, 2000. Restriction fragment length polymorphism (RFLP) for protein disulfide isomerase (PDI) gene sequences in Triticum and Aegilops species. Theor Appl Genet 101: 220–226.

    Article  CAS  Google Scholar 

  • Dvorak, J. & H.-B. Zhang, 1990. Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87: 9640–9644.

    Article  PubMed  CAS  Google Scholar 

  • Dvorak, J., M.-C. Luo, Z.-L. Yang & H.-B. Zhang, 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97: 657–670.

    Article  CAS  Google Scholar 

  • Excoffier, L., P.E. Smouse & J.M. Quattro, 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131: 479–491.

    PubMed  CAS  Google Scholar 

  • Fahima, T., G.L. Sun, A. Beharav, T. Krugman, A. Beiles & E. Nevo, 1999. RAPD polymorphism of of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98: 434–447.

    Article  CAS  Google Scholar 

  • Felsenstein, J., 1995. PHYLIP version 3.57c. Distributed by the author. Department of Genetics, University of Washington, Seattle, WA 98195 USA.

    Google Scholar 

  • Hedge, S.G., J. Valkoun & J.G. Waines, 2000. Genetic diversity in wild wheats and goat grass. Theor Appl Genet 101: 309–316.

    Article  Google Scholar 

  • Heun, M., R. Schäfer-Pregl, D. Klawan, R. Castagna, M. Accerbi, B. Borghi & F. Salamini, 1997. Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278: 1312–1314.

    Article  CAS  Google Scholar 

  • Innan, H., R. Terauchi, G. Kahl & F. Tajima, 1999. A method for estimating nucleotide diversity from AFLP data. Genetics 151: 1157–1164.

    PubMed  CAS  Google Scholar 

  • Kihara, H., 1924. Cytologische und genetische studien bei wichtigen getreidearten. Mem Coll Sci Kyoto B: 1–200.

    Google Scholar 

  • Kihara, H., 1944. Die Entdeckung des DD-Analysators beim Weizen. Agric Hortic 19: 889–890.

    Google Scholar 

  • Kimber, G. & M. Feldman, 1987. Wild Wheat: An Introduction. Special Report No. 353, University of Missouri, Columbia.

    Google Scholar 

  • Kimber, G. & K. Tsunewaki, 1988. Genome symbols and plasma types in the wheat group. Proc 6th Int Wheat Genet Symp, Cambridge, England, pp. 1209-1210.

  • Li, Y.C., T. Fahima, J.H. Peng, M.S. Röder, V.M. Kirzhner, A. Beiles, A.B. Korol & E. Nevo, 2000. Edaphic microsatellite DNA divergence in wild emmer wheat, Triticum dicoccoides, at a microsite: Tabigha, Israel. Theor Appl Genet 101: 1029–1038.

    Article  CAS  Google Scholar 

  • Lilienfeld, F.A., 1951. H. Kihara: Genome analysis in Triticum and Aegilops. X. Concluding review. Cytologia 16: 101–123.

    Google Scholar 

  • Mackill, D.J., Z. Zhang, E.D. Redona & P.M. Colowit, 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39: 969–977.

    PubMed  CAS  Google Scholar 

  • Maheswaran, M., P.K. Subudhi, S. Nandi, J.C. Xu, A. Parco, D.C. Yang & N. Huang, 1997. Polymorphism, distribution and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94: 39–45.

    Article  CAS  Google Scholar 

  • Maugham, P.J., M.A. Saghai Maroof, G.R. Buss & G.M. Huestis, 1996. Amplified fragment length polymorphism (AFLP) in Soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl Genet 93: 392–401.

    Article  Google Scholar 

  • McFadden, E.S. & E.R. Sears, 1946. The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37: 81–89, 107-116.

    Google Scholar 

  • Miyashita, N.T., N. Mori & K. Tsunewaki, 1994. Molecular variation in chloroplast DNA regions in ancestral species of wheat. Genetics 137: 883–889.

    PubMed  CAS  Google Scholar 

  • Miyashita, N.T., A. Kawabe & H. Innan, 1999. DNA variation in the wild plant Arabidopsis thaliana revealed by amplified flagment length polymorphism analysis. Genetics 152: 1723–1731.

    PubMed  CAS  Google Scholar 

  • Moghaddam, M., B. Ehdaie & G. Waines, 2000. Genetic diversity in populations of wild diploid wheat Triticum urartu Thum. ex. Gandil. revealed by isozyme markers. Genet Res Crop Evol 47: 323–334.

    Article  Google Scholar 

  • Mori, N., Y.-G. Liu & K. Tsunewaki, 1995. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theor Appl Genet 90: 129–134.

    Article  CAS  Google Scholar 

  • Mori, N., T. Moriguchi & C. Nakamura, 1997. RFLP analysis of nuclear DNA for study of phylogeny and domestication of tetraploid wheat. Genes Genet Syst 72: 153–161.

    Article  CAS  Google Scholar 

  • Murray, M.G. & W.F. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321–4325.

    PubMed  CAS  Google Scholar 

  • Nevo, E. & A. Beiles, 1989. Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution, and application in breeding. Theor Appl Genet 77: 421–455.

    Article  Google Scholar 

  • Niks, R.E. & D. Rubiales, 1993. Use of non-host resistance in wheat breeding. In: A.B. Damania (Ed.), Biodiversity and Wheat Improvement, pp. 155–164. A Co-Publication with the International Center for Agricultural Research in the Dry Areas (ICARDA) and Sayce Publishing, United Kingdom.

    Google Scholar 

  • Pakniyat, H., W. Powell, E. Baird, L.L. Handley, D. Robinson, C.M. Scrimgeour, E. Nevo, C.A. Hackett, P.D.S. Caligari & B.P. Forster, 1997. AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40: 332–341.

    Article  CAS  Google Scholar 

  • Saitou, T. & M. Nei, 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sarkar, P. & G.L. Stebbins, 1956. Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43: 297–304.

    Article  Google Scholar 

  • Sasanuma, T., N.T. Miyashita & K. Tsunewaki, 1996. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 3. Intra-and interspecific variations of five Aegilops Sitopis species. Theor Appl Genet 92: 928–934.

    Article  CAS  Google Scholar 

  • Sharma, S.K., M.R. Knox & T.H.N. Ellis, 1996. AFLP analysis of the diversity and phylogeny of Lens and its comparison with RAPD analysis. Theor Appl Genet 93: 751–758.

    Article  CAS  Google Scholar 

  • Takumi, S., S. Nasuda, Y.-G. Liu & K. Tsunewaki, 1993. Wheat phylogeny determined by RFLP analysis of nuclear DNA. 1. Einkorn wheat. Jpn J Genet 68: 73–79.

    Article  Google Scholar 

  • Thomas, C.M., P. Vos, M. Zabeau, D.A. Jones, K.A. Norcott, B.P. Chadwick & J.D.G. Jones, 1995. Identification of ampli-fied restriction fragment polymorphism (AFLP) markers thightly linked to the tomato Cf-9 gene for resistance to Cladosporium fluvum. Plant J 8: 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Vavilov, N.I., 1926. Studies on the origin of cultivated plants. Inst Appl Bot Plant Breed, Leningrad.

    Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407–4414.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasanuma, T., Chabane, K., Endo, T.R. et al. Genetic diversity of wheat wild relatives in the Near East detected by AFLP. Euphytica 127, 81–93 (2002). https://doi.org/10.1023/A:1019941817057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019941817057

Navigation