Skip to main content
Log in

Loading of Tetanus Toxoid to Biodegradable Nanoparticles from Branched Poly(Sulfobutyl-Polyvinyl Alcohol)-g-(Lactide-Co-Glycolide) Nanoparticles by Protein Adsorption: A Mechanistic Study

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Mucosal delivery of vaccine-loaded nanoparticles (NP) is an attractive proposition from an immunologic perspective. Although numerous NP preparation methods are known, sufficient antigen loading of NP remains a challenge. The aim of this study was to evaluate adsorptive loading of NP with a negatively charged surface structure using tetanus toxoid (TT) as a model vaccine.

Methods. Blank NP, consisting of poly(sulfobutyl-polyvinyl alcohol)-g-(lactide-co-glycolide), as well as poly(lactide-co-glycolide) NP were prepared by a solvent displacement technique. The use of polymers with different degrees of substitution resulted in NP with different negative surfaces charges. Adsorption of TT to NP was performed varying to NP surface properties, protein equilibrium concentration, and loading conditions.

Results. The protein adsorption was controlled by NP surface properties, and maximum TT adsorption occurred at highly negatively charged NP surfaces. Results from isothermal titration calorimetry and ζ-potential measurement suggest an adsorption process governed by electrostatic interactions. The adsorption followed the Langmuir isotherm in the concentration ranges studied. TT withstood this gentle loading procedure in a nonaggregated, enzyme-linked immunoabsorbant assay-active form.

Conclusions. The results demonstrate that negatively charged NP consisting of poly(sulfobutyl-polyvinyl alcohol)-g-(lactide-co-glycolide) are suitable for adsorptive loading with TT and may have potential for mucosal vaccination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Brandtzaeg, A. E. Berstad, I. N. Farstad, G. Haraldsen, L. Helgeland, F. L. Jahnsen, F. E. Johansen, I. B. Natvig, E. M. Nilsen, and J. Rugtveit. Mucosal immunity: a major adaptive defense mechanism. Behring Inst. Mitt. 98:1–23 (1997).

    Google Scholar 

  2. A. M. Hillery. Microparticulate delivery systems: potential drug/ vaccine carriers via mucosal routes. Pharm. Sci. Tech. Today 1: 69–75 (1998).

    Google Scholar 

  3. J. Holmgren, P. Brantzaeg, A. Capron, M. Francotte, M. Kilian, J. P. Kraehenbuhl, T. Lehner, and R. Seljelid: European Commission COST/STD Initiative. Report of the expert panel VI. Concerted efforts in the field of mucosal immunology. Vaccine 14:644–664 (1996).

    Google Scholar 

  4. T. Jung, W. Kamm, A. Breitenbach, E. Kaiserling, J. X. Xiao, and T. Kissel. Polymeric carriers for the oral delivery of polypeptides and peptides based on biodegradable nanoparticles from charge containing brush-like branched polyesters. Eur. J. Pharm. Biopharm. 50:147–160 (2000).

    Google Scholar 

  5. D. Quintanar-Guerrero, E. Allemann, H. Fessi, and E. Doelker. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24:1113–1128 (1998).

    Google Scholar 

  6. M. D. Blanco and M. J. Alonso. Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres. Eur. J. Pharm. Biopharm. 43:287–294 (1997).

    Google Scholar 

  7. M. F. Zambaux, F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie, M. J. Alonso, P. Labrude, and C. Vigneron. Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J. Controlled Release 50:31–40 (1998).

    Google Scholar 

  8. A. Breitenbach and T. Kissel. Biodegradable comb polyesters. Part 1: Synthesis, characterization and structural analysis of poly-(lactide) and poly(lactide-co-glycolide) grafted onto watersoluble poly(vinyl alcohol) as backbone. Polymer 39:3261–3271 (1998).

    Google Scholar 

  9. T. Jung, A. Breitenbach, and T. Kissel. Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide)s facilitate the preparation of small negatively charged biodegradable nanospheres. J. Controlled Release 67:157–169 (2000).

    Google Scholar 

  10. R. H. Müller. Particle and surface characterisation methods. In R. H. Müller and W. Mehnert (eds.), Surface Hydrophobicity: Determination by Rose Bengal (RB) Adsorption Methods, Medpharm Scientific Publishers, Stuttgart, Germany, 1997 pp 215–228.

    Google Scholar 

  11. M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7:248–254 (1976).

    Google Scholar 

  12. A. J. Almeida, H. O. Alpar, and M. R. Brown. Immune response to nasal delivery of antigenically intact tetanus toxoid associated with poly(L-lactic acid) microspheres in rats, rabbits and guineapigs. J. Pharm. Pharmacol. 45:198–203 (1993).

    Google Scholar 

  13. M. Lück, B. R. Paulke, W. Schröder, T. Blunk, and R. H. Müller. Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39:478–485 (1998).

    Google Scholar 

  14. M. T. Peracchia, C. Vauthier, F. Puisieux, and P. Couvreur. Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J. Biomed. Mater. Res. 34:317–326 (1997).

    Google Scholar 

  15. M. T. Peracchia, S. Harnisch, H. Pinto-Alphandary, A. Gulik, J. C. Dedieu, D. Desmaele, J. d'Angelo, R. H. Müller, and P. Couvreur. Visualization of in vitro protein-rejecting properties of PEGylated stealth polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275 (1999).

    Google Scholar 

  16. W. Norde and J. Lyklema. The adsorption of human plasma albumin and bovine pancreas ribunuclease at negativley charged polystyrene surfaces. II. Hydrogen ion titration. J. Colloid Interface Sci. 66:266–276 (1978).

    Google Scholar 

  17. W. Norde. Adsorption of proteins from solution at the solidliquid interface. Adv. Colloid Interface Sci. 25:267–340 (1986).

    Google Scholar 

  18. H. O. Alpar and A. J. Almeida. Identification of some of the physico-chemical characteristics of microspheres which influence the induction of the immune response following mucosal delivery. Eur. J. Pharm. Biopharm. 40:198–202 (1994).

    Google Scholar 

  19. W. Norde and J. Lyklema. The adsorption of human plasma albumin and bovine pancreas ribunuclease at negatively charged polystyrene surfaces. I. Adsorption isotherms: effect of charge, ionic strength, and temperature. J. Colloid Interface Sci. 66:257–265 (1978).

    Google Scholar 

  20. E. Nyilas, T. H. Chiu, and G. A. Herzlinger. Thermodynamics of native protein/foreign surface interactions. I. Calorimetry of the human gamma-globulin/glass system. Trans. Am. Soc. Artif. Intern. Organs 20:480–490 (1974).

    Google Scholar 

  21. T. H. Chiu, E. Nyilas, and D. M. Lederman. Thermodynamics of native protein/foreign surface interactions. IV. Calorimetric and microelectrophoretic study of human fibrinogen sorption onto glass and LTI-carbon. Trans. Am. Soc. Artif. Intern. Organs 22:498–513 (1976).

    Google Scholar 

  22. D. R. Absolom, W. Zingg, and A. W. Neumann. Protein adsorption to polymer particles: role of surface properties. J. Biomed. Mater. Res. 21:161–171 (1987).

    Google Scholar 

  23. W. Norde and J. Lyklema. The adsorption of human plasma albumin and bovine pancreas ribunuclease at negatively charged polystyrene surfaces. V. Microcalorimetry. J. Colloid Interface Sci. 66:295–302 (1978).

    Google Scholar 

  24. W. Norde and J. Lyklema. The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces. III. Electrophoresis. J. Colloid Interface Sci. 66:277–284 (1978).

    Google Scholar 

  25. W. Norde and J. Lyklema. The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces. IV. The charge distribution in the adsorbed state. J. Colloid Interface Sci. 66:285–294 (1978).

    Google Scholar 

  26. M. C. Maste, W. Norde, and A. J. Visser. Adsorption induced conformational changes in the serine proteinase savinase: a tryptophan fluorescence and circular dichroism study. J. Colloid Interface Sci. 196:224–230 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, T., Kamm, W., Breitenbach, A. et al. Loading of Tetanus Toxoid to Biodegradable Nanoparticles from Branched Poly(Sulfobutyl-Polyvinyl Alcohol)-g-(Lactide-Co-Glycolide) Nanoparticles by Protein Adsorption: A Mechanistic Study. Pharm Res 19, 1105–1113 (2002). https://doi.org/10.1023/A:1019833822997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019833822997

Navigation