Skip to main content
Log in

Dependence of Malate Dehydrogenase Structure on the Type of Metabolism in Freshwater Filamentous Colorless Sulfur Bacteria of the Genus Beggiatoa

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Major pathways of carbon metabolism were studied in strains D-402 and D-405 of freshwater colorless sulfur bacteria of the genus Beggiatoa grown organotrophically and mixotrophically. The bacteria were found to possess all the enzymes of the tricarboxylic acid (TCA) and glyoxylate cycles. When organotrophic growth changed to mixotrophic growth, the activity of the TCA cycle enzymes decreased 2- to 3-fold, but the activity of enzymes of the glyoxylate cycle increased threefold. It follows that, in the oxidation of thiosulfate, organic compounds no longer play the leading part in the energy metabolism, and most of electrons that enter the electron transport chain (ETC) derive from inorganic sulfur compounds. A connection was established between the structure and kinetic characteristics of malate dehydrogenase—an enzyme of the TCA and glyoxylate cycles—and the type of carbon metabolism in the strains studied. Malate dehydrogenase in organotrophically grown cells of strains D-402 and D-405 is dimeric, whereas in strain D-402 grown mixotrophically it is tetrameric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Patritskaya, V.Yu., Regulation of the Carbon and Sulfur Metabolism in Filamentous Gliding Sulfur Bacteria of the Genera Beggiatoa and Leucothrix, Cand. Sci. (Biol.) Dissertation, Moscow, Inst. Microbiol., Russ. Acad. Sci., 2001.

    Google Scholar 

  2. Grabovich, M.Yu., Dubinina, G.A., Lebedeva, V.Yu., and Churikova, V.V., Mixotrophic and Lithoheterotrophic Growth of the Freshwater Filamentous Sulfur Bacterium Beggiatoa leptomitiformis D-402, Mikrobiologiya, 1998, vol. 57, no. 4, pp. 383–388.

    Google Scholar 

  3. Grabovich, M.Yu., Patritskaya, V.Yu., Muntyan, M.S., and Dubinina, G.A., Lithoautotrophic Growth of the Freshwater Strain Beggiatoa D-402 and Energy Conservation Culture under Microoxic Conditions, FEMS Microbiol. Lett., 2001, vol. 204, pp. 341–345.

    Google Scholar 

  4. Friedrich, P., Enzymes: Quaternary Structure and beyond: An Introduction to Supramolecular Enzymes Organization, Budapest: Akademiai Kiado, 1983.

    Google Scholar 

  5. Labrou, N.E. and Clonis, Y.D., L-Malate Dehydrogenase from Pseudomonas stutzeri: Purification and Characterization, Arch. Biochem. Biophys., 1997, vol. 337, pp.-103–114.

    Google Scholar 

  6. Rolstand, A.K., Howland, E., and Sirenag, R., Malate Dehydrogenase from the Thermophilic Green Bacterium Chloroflexus aurantiacus: Purification, Molecular Weight, Amino Acid Composition, and Partial Amino Acid Sequence, J. Bacteriol., 1988, vol. 170, pp. 2947–2953.

    Google Scholar 

  7. Tayeh, M.A. and Madigan, M.T., Malate Dehydrogenases in Phototrophic Purple Bacteria: Thermal Stability, Amino Acid Composition and Immunological Properties, Biochem. J., 1988, vol. 252, pp. 595–600.

    Google Scholar 

  8. Janiczek, O., Kovar, J., and Glatz, Z., Purification and Properties of Malate Dehydrogenase from Paracoccus denitrificans, Prep. Biochem., 1993, vol. 23, pp. 285–301.

    Google Scholar 

  9. Grabovich, M.Yu., Dubinina, G.A., Churikova, V.V., Churikov, S.N., Korovina, T.I., and Glushkov, A.F., A Study of the Carbon Metabolism of Beggiatoa leptomitiformis during Chemoorganoheterotrophic Growth, Mikrobiologiya, 1993, vol. 62, no. 3, pp. 430–435.

    Google Scholar 

  10. Grabovich, M.Yu., Dubinina, G.A., Churikova, V.V., Glushkov, A.F., and Churikov, S.N., Peculiarities of the Carbon Metabolism in the Colorless Sulfur Bacterium Macromonas bipunctata, Mikrobiologiya, 1993, vol. 62, no. 3, pp. 421–429.

    Google Scholar 

  11. Determan, G., Gel'-khromatografiya (Gel Chromatography), Moscow: Mir, 1970.

    Google Scholar 

  12. Nesterenko, M.V., Tilley, M., and Upton, S.J., A Simple Modification of Blum's Silver Stain Method Allows for 30 Minute Detection of Proteins in Polyacrylamide Gels, J. Biochem. Biol., 1994, vol. 28, pp. 239–242.

    Google Scholar 

  13. Zemlyanukhin, A.A. and Zemlyanukhin, L.A., Bol'shoi praktikum po fiziologii i biokhimii rastenii (A Practical Course of Plant Physiology and Biochemistry), Vornezh, Voronezh Gos. Univ., 1996.

    Google Scholar 

  14. Gaal, O., Medgyesi, G.A., and Vereczkey, L., Electrophoresis in the Separation of Biological Macromolecules, Chichester: Wiley, 1980.

    Google Scholar 

  15. Eprintsev, A.T., Igamberdiev, A.U., and Ashnin, L., The Malate Dehydrogenase System of Wolfia arrhiza: Characterization and Role in the Adaptation to Light and Darkness, Fiziol. Rast. (Moscow), 1996, vol. 43, pp. 36–42.

    Google Scholar 

  16. Chekanova, Yu.A., The Interrelation of Sulfur Compound Oxidation with the Operation of the Respiratory Chain in Macromonas bipunctata and Beggiatoa leptomitiformis Strain D-405, Cand. Sci. (Biol.) Dissertation, Moscow, Inst. Microbiol., Russ. Acad. Sci., 1991.

    Google Scholar 

  17. Hunter, G.R., Hellman, U., Cazzulo, J.J., and Nowicki, ?C., Tetrameric and Dimeric Malate Dehydrogenase Isoenzymes in Trypanosoma cruzi Epimastigotes, Mol. Biochem. Parasitol., 2000, vol. 105, pp. 203–214.

    Google Scholar 

  18. Pinheiro de Carvalho, M.A., Zemlyanukhin, A.A., and Eprintsev, A.T., Malatdegidrogenaza vysshikh rastenii (Malate Dehydrogenase of Higher Plants), Voronezh: Voronezh Gos. Univ., 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanova, I.Y., Eprintsev, A.T., Falaleeva, M.I. et al. Dependence of Malate Dehydrogenase Structure on the Type of Metabolism in Freshwater Filamentous Colorless Sulfur Bacteria of the Genus Beggiatoa. Microbiology 71, 377–382 (2002). https://doi.org/10.1023/A:1019825006330

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019825006330

Navigation