Skip to main content
Log in

Intraresidual HNCA: An experiment for correlating only intraresidual backbone resonances

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Resonance overlap in 13Cα-dimension can seriously deteriorate sequential assignment of proteins, especially in the case of highly alpha helical or partially unfolded structures. In this paper, two novel triple-resonance experiments, for obtaining solely intraresidual HN, N, Cα correlations, are introduced. The proposed experiments are complementary to the conventional HN(CO)CA experiment, and can be utilized for the sequential assignment of 15N/13C/(2H)-labeled proteins. Coherence transfer efficiency of the new experiment is comparable to the conventional HNCA experiment on proteins with sufficiently long 15N transverse relaxation time. These new coherence transfer schemes are also very useful building blocks for experiments gathering structural information, such as J-couplings, exclusively on the intraresidual alpha carbon. Experimental assessment is demonstrated on ubiquitin at 600 1H MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asla Ltd. http://www.asla-biotech.com

  • Bax, A. and Grzesiek, S. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  • Bax, A. and Ikura, M. (1991) J. Biomol. NMR, 1, 99–104.

    Google Scholar 

  • Chiarparin, E., Pelupessy, P., Ghose, R. and Bodenhausen, G. (2000) J. Am. Chem. Soc., 122, 1758–1761.

    Google Scholar 

  • Delaglio, F., Torchia, D.A. and Bax, A. (1991) J. Biomol. NMR, 1, 439–446.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992a) J. Magn. Reson. 99, 201–207.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b) J. Am. Chem. Soc. 114, 6291–6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993a) J. Biomol. NMR 3, 185–204.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1993b) J. Am. Chem. Soc., 115, 12593–12594.

    Google Scholar 

  • Kay, L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  • Logan, T.M., Olejniczak, E.T., Xu, R.X. and Fesik, S.W. (1993) J. Biomol. NMR, 3, 225–231.

    Google Scholar 

  • Loria, J.P., Rance, M. and Palmer III, A.G. (1999) J. Magn. Reson., 141, 180–184.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Meissner, A., Schulte-Herbrüggen, T., Briand, J. and Sørensen, O.W. (1998) Mol. Phys., 95, 1137–1142.

    Google Scholar 

  • Panchal, S.C., Bhavesh, N.S. and Hosur, R.V. (2001) J. Biomol. NMR, 20, 135–147.

    Google Scholar 

  • Permi, P., Sorsa, T., Kilpeläinen, I. and Annila, A. (1999) J. Magn. Reson., 141, 44–51.

    Google Scholar 

  • Permi, P. and Annila, A. (2001a) Magn. Res. Chem., 39, 179–181.

    Google Scholar 

  • Permi, P. and Annila, A. (2001b) J. Biomol. NMR, 20, 127–133.

    Google Scholar 

  • Permi, P. and Annila, A. (2002) J. Magn. Reson., 155, 123–130.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.

    Google Scholar 

  • Pervushin, K.V., Wider, G. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 345–348.

    Google Scholar 

  • Piantini, U., Sørensen, O.W. and Ernst, R. (1982) J. Am. Chem. Soc., 104, 6800–6801.

    Google Scholar 

  • Rance, M., Loria, P. and Palmer, A.G., III. (1999) J. Magn. Reson., 136, 92–101.

    Google Scholar 

  • Sattler, M., Schleucher, J. and Griesinger, C. (1999) Prog. Nucl. Magn. Reson. Spectr., 34, 93–158.

    Google Scholar 

  • Schleucher, J., Sattler, M. and Griesinger, C. (1993) Angew. Chem. Int. Ed. Engl., 32, 1489–1491.

    Google Scholar 

  • Shaka, A.J., Keeler, J., Frenkiel, T. and Freeman, R. (1983) J. Magn. Reson., 52, 335–338.

    Google Scholar 

  • Shaka, A.J., Parker, P.B. and Freeman, R. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • Shan, X., Gardner, K.H., Muhandiram, D.R., Rao, N.S., Arrowsmith, C.H., and Kay, L.E. (1996) J. Am. Chem. Soc., 118, 6570–6579.

    Google Scholar 

  • Weigelt, J. (1998) J. Am. Chem. Soc., 120, 10778–10779.

    Google Scholar 

  • Wittekind, M. and Mueller, L. (1992) J. Magn. Reson., 101B, 201–205.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, John Wiley and Sons, New York, NY.

    Google Scholar 

  • Yamazaki, T., Lee, W., Revington, M., Mattiello, D.L., Dahlquist, F.W., Arrowsmith, C.H. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 6464–6465.

    Google Scholar 

  • Yamazaki, T., Tochio, H., Furui, J., Aimoto, S. and Kyogoku, Y. (1997) J. Am. Chem. Soc., 120, 872–880.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1999a) J. Am. Chem. Soc., 121, 2571–2575.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1999b) J. Biomol. NMR, 13, 3–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Permi, P. Intraresidual HNCA: An experiment for correlating only intraresidual backbone resonances. J Biomol NMR 23, 201–209 (2002). https://doi.org/10.1023/A:1019819514298

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019819514298

Navigation