Skip to main content
Log in

Limited and Optimal Sampling Strategies for Etoposide and Etoposide Catechol in Children with Leukemia

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Etoposide is used to treat childhood malignancies, and its plasma pharmacokinetics have been related to pharmacodynamic endpoints. Limiting the number of samples should facilitate the assessment of etoposide pharmacokinetics in children. We compared limited sampling strategies using multiple linear regression of plasma concentrations and clearance with Bayesian methods of estimating clearance using compartmental pharmacokinetic models. Optimal sampling times were estimated in the multiple linear regression method by determining the combination of two samples which maximized the correlation coefficient, and in the Bayesian estimation approach by minimizing the variance in estimates of clearance. Clearance estimates were compared to the actual clearances from Monte Carlo-simulated data and predicted clearances estimated using all available plasma concentrations in clinical data from children with acute lymphoblastic leukemia. Multiple linear regression poorly predicted clearance (mean bias 8.3%, precision 17.5%), but improved if plasma concentrations were logarithmically transformed (mean bias 1.4%, precision 12.5%). Bayesian estimation methods with optimal samples gave the best overall prediction (mean bias 2.5%, precision 6.8%) and also performed better than regression methods for abnormally high or low clearances. We conclude that Bayesian estimation with limited sampling gives the best estimates of etoposide clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Desoize, F. Marechal, and A. Cattan. Clinical pharmacokinetics of etoposide during 120 hr continuous infusions in solid tumours. Br. J. Cancer 62:840-841 (1990).

    PubMed  Google Scholar 

  2. M. V. Relling, H. McLeod, L. Bowman, and V. M. Santana, Etoposide pharmacokinetics and pharmacodynamics after acute and chronic exposure to cisplatin. Clin. Pharmacol. Ther. 56:503-511 (1994).

    PubMed  Google Scholar 

  3. K. Kobayashi and M. J. Ratain. Pharmacodynamics and long-term toxicity of etoposide. Cancer Chemother. Pharmacol. 34 Suppl.:S64-8 (1994).

    PubMed  Google Scholar 

  4. D. S. Sonnichsen, R. C. Ribeiro, X. Luo, P. Mathew, and M. Relling, Pharmacokinetics and pharmacodynamics of 21 day continuous oral etoposide in pediatric solid tumor patients. Clin. Pharmacol. Ther. 58:99-107 (1995).

    PubMed  Google Scholar 

  5. H. Minami, M. J. Ratain, Y. Ando, and K. Shimokata. Pharmacodynamic modeling of prolonged administration of etoposide. Cancer Chemother. Pharmacol. 39:61-66 (1996).

    PubMed  Google Scholar 

  6. D. Gentili, M. Zucchetti, V. Torri, C. Sessa, J. de Jong, F. Cavalli, and M. D'Incalci. A limited sampling model for the pharmacokinetics of etoposide given orally. Cancer Chemother. Pharmacol. 32:482-486 (1993).

    PubMed  Google Scholar 

  7. B. Tranchand, C. Amsellem, E. Chatelut, G. Freyer, A. Iliadis, B. Ligneau, V. Trillet-Lenoir, P. Canal, I. Lochon, and C. J. Ardiet. A limited-sampling strategy for estimation of etoposide pharmacokinetics in cancer patients. Cancer Chemother. Pharmacol. 43:316-322 (1999).

    PubMed  Google Scholar 

  8. J. B. Holz, H. Koppler, L. Schmidt, H. W. Fritsch, K. H. Pfluger, and H. Jungclas. Limited sampling models for reliable estimation of etoposide area under the curve. Eur. J Cancer 31A:1794-1798 (1995).

    PubMed  Google Scholar 

  9. B. L. Lum, K. J. Lane, T. W. Synold, A. Goram, S. B. Charnick, and B. I. Sikic, Validation of a limited sampling model to determine etoposide area under the curve. Pharmacotherapy 17:887-890 (1997).

    PubMed  Google Scholar 

  10. I. Mahmood and R. Miller. Comparison of the Bayesian approach and a limited sampling model for the estimation of AUC and Cmax: a computer simulation analysis. Int. J Clin. Pharmacol. Ther. 37:439-445 (1999).

    PubMed  Google Scholar 

  11. E. Walter and L. Pronzato. Optimal experiment design for nonlinear models subject to large prior uncertainties. Am. J Physiol. 253:R530-R534 (1987).

    PubMed  Google Scholar 

  12. D. Z. D'Argenio. Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments. Math. Biosci. 99:105-118 (1990).

    PubMed  Google Scholar 

  13. E. Walter and L. Pronzato. Qualitative and quantitative experiment design for phenomenological models-A survey. Automatica 26:195-213 (1990).

    Google Scholar 

  14. G. D. Swanson. On the single-point, single-dose problem. In: Advanced Methods of Pharmacokinetic and Pharmacodynamic Systems Analysis. Plenum Press, New York, 129-135 (1991)

    Google Scholar 

  15. Y. Merle and F. Mentre. Bayesian design criteria: computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model. J. Pharmacokinet. Biopharm. 23:101-125 (1995).

    PubMed  Google Scholar 

  16. Y. Merle and F. Mentre. Stochastic optimization algorithms of a Bayesian design criterion for Bayesian parameter estimation of nonlinear regression models: application in pharmacokinetics. Math. Biosci. 144:45-70 (1997).

    PubMed  Google Scholar 

  17. D. Z. D'Argenio. Optimal sampling times for pharmacokinetic experiments. J. Pharmacokinet. Biopharm. 9:739-756 (1981).

    PubMed  Google Scholar 

  18. G. E. P. Box and H. L. Lucas, Design of experiments in nonlinear situations. Biometrika 46:77-90 (1959).

    Google Scholar 

  19. D. Z. D'Argenio and A. Schumitzky. ADAPT II User's Guide: Pharmacokinetic_Pharmacodynamic Systems Analysis Software (1997).

  20. J. Boos, E. Real, P. Schulze-Westhof, J. Wolff, T. Euting, and H. Jürgens. Investigation of the variability of etoposide pharmacokinetics in children. Int. J. Clin. Pharmacol. Ther.-Toxicol. 30:495-497 (1992).

    PubMed  Google Scholar 

  21. M. V. Relling, Y. Yanishevski, J. Nemec, W. E. Evans, J. M. Boyett, F. G. Behm, and C. H. Pui. Etoposide and antimetabolite pharmacology in patients who develop secondary acute myeloid leukemia. Leukemia 12:346-352 (1998).

    PubMed  Google Scholar 

  22. S. P. Lowis, A. D. J. Pearson, D. R. Newell, and M. Cole, Etoposide pharmacokinetics in children: The development and prospective validation of a dosing equation. Cancer Res. 53:4881-4889 (1993).

    PubMed  Google Scholar 

  23. X. Cai, M. H. Woo, M. J. Edick, and M. V. Relling, Simultaneous quantitation of etoposide and its catechol metabolite in human plasma using high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B. Biomed. Sci. Appl. 728:241-250 (1999).

    PubMed  Google Scholar 

  24. L. B. Sheiner and S. L. Beal, Some suggestions for measuring predictive performance. J. Pharmacokinet. Biopharm. 9:503-512 (1981).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panetta, J.C., Wilkinson, M., Pui, CH. et al. Limited and Optimal Sampling Strategies for Etoposide and Etoposide Catechol in Children with Leukemia. J Pharmacokinet Pharmacodyn 29, 171–188 (2002). https://doi.org/10.1023/A:1019755608555

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019755608555

Navigation