Skip to main content
Log in

Pseudoinstantons in Metric-Affine Field Theory

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In abstract Yang–Mills theory the standard instanton construction relies on the Hodge star having real eigenvalues which makes it inapplicable in the Lorentzian case. We show that for the affine connection an instanton-type construction can be carried out in the Lorentzian setting. The Lorentzian analogue of an instanton is a spacetime whose connection is metric compatible and Riemann curvature irreducible (“pseudoinstanton”). We suggest a metric-affine action which is a natural generalization of the Yang–Mills action and for which pseudoinstantons are stationary points. We show that a spacetime with a Ricci flat Levi-Civita connection is a pseudoinstanton, so the vacuum Einstein equation is a special case of our theory. We also find another pseudoinstanton which is a wave of torsion in Minkowski space. Analysis of the latter solution indicates the possibility of using it as a model for the neutrino.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Hehl, F. W., McCrea, J. D., Mielke, E. W., and Ne'eman, Y. (1995). Phys. Rep. 258, 1–171.

    Google Scholar 

  2. Landau, L. D., and Lifshitz, E. M. (1986). Theory of Elasticity (Course of Theoretical Physics vol 7) 3d edn, Butterworth-Heinemann, Oxford.

    Google Scholar 

  3. Weyl, H. (1919). Ann. Phys. (Leipz.) 59, 101–133.

    Google Scholar 

  4. Eisenhart, L. P. (2001). Non-Riemannian Geometry 11th printing, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  5. Yang, C. N. (1974). Phys. Rev. Lett. 33, 445–447.

    Google Scholar 

  6. Mielke, E. W. (1981). Gen. Rel. Grav. 13, 175–187.

    Google Scholar 

  7. Stephenson, G. (1958). Nuovo Cimento 9, 263–269.

    Google Scholar 

  8. Buchdahl, H. A. (1959). Mathematical Reviews 20, 1238.

    Google Scholar 

  9. Higgs, P. W. (1959). Nuovo Cimento 11, 816–820.

    Google Scholar 

  10. Thompson, A. H. (1975). Phys. Rev. Lett. 34, 507–508.

    Google Scholar 

  11. Pavelle, R. (1975). Phys. Rev. Lett. 34, 1114.

    Google Scholar 

  12. Thompson, A. H. (1975). Phys. Rev. Lett. 35, 320–322.

    Google Scholar 

  13. Fairchild, E. E., Jr. (1976). Phys. Rev. D 14 384–391.

    Google Scholar 

  14. Fairchild, E. E., Jr. (1976). Phys. Rev. D 14 2833.

    Google Scholar 

  15. Olesen, P. (1977). Phys. Lett. 71B, 189–190.

    Google Scholar 

  16. Wilczek, F. (1977). In: Quark Confinement and Field theory, eds. D. R. Stump and D. H. Weingarten, Wiley-Interscience, New York, 211–219.

    Google Scholar 

  17. Atiyah, M. F. (1979). Geometry of Yang-Mills Fields, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa.

    Google Scholar 

  18. King, A. D. and Vassiliev, D. (2001). Class. Quantum Grav. 18, 2317–2329.

    Google Scholar 

  19. Nakahara, M. (1998). Geometry, Topology and Physics, Institute of Physics Publishing, Bristol.

    Google Scholar 

  20. Vassiliev, D. (2001). In: Noncommutative Structures in Mathematics and Physics, eds. S. Duplij and J. Wess, Kluwer Academic Publishers, Dordrecht, 427–439.

    Google Scholar 

  21. Kobayashi, S. and Nomizu, K. (1969). Foundations of Differential Geometry vol 2, Interscience, New York.

    Google Scholar 

  22. Steenrod, N. (1974). The Topology of Fibre Bundles 9th printing, Princeton University Press, Princeton New Jersey.

    Google Scholar 

  23. Lanczos, C. (1949). Rev. Mod. Phys. 21, 497–502.

    Google Scholar 

  24. Singh, P. and Griffiths, J. B. (1990). Gen. Rel. Grav. 22, 947–956.

    Google Scholar 

  25. Jogia, S. and Griffiths, J. B. (1980). Gen. Rel. Grav. 12, 597–617.

    Google Scholar 

  26. Singh, P. and Griffiths, J. B. (1990). Gen. Rel. Grav. 22, 269–287.

    Google Scholar 

  27. Adak, M., Dereli, T., and Ryder, L. H. (2001). Class. Quantum Grav. 18, 1503–1512.

    Google Scholar 

  28. Weyl, H. (1952). Space-Time-Matter Engl. transl. of 4th edn, Dover Publications, New York.

    Google Scholar 

  29. Hehl, F.W., McCrea, J. D., and Mielke, E.W. (1988). In: Exact Sciences and their Philosophical Foundations, eds.W. Deppert, K. Hübner, A. Oberschelp, and V. Weidemann, Verlag Peter Lang, Frankfurt am Main, 241–310.

    Google Scholar 

  30. Catto, D., Francaviglia, M., and Kijowski, J. (1980). Bull. Acad. Polon. Sci. Sér. Sci. Phys. Astronom. 28, 179–186.

    Google Scholar 

  31. Ferraris, M. and Kijowski, J. (1982). Gen. Rel. Grav. 14, 37–47.

    Google Scholar 

  32. Jakubiec, A. and Kijowski, J. (1985). Lett. Math. Phys. 9, 1–11.

    Google Scholar 

  33. Jakubiec, A. and Kijowski, J. (1989). J. Math. Phys. 30, 1073–1076.

    Google Scholar 

  34. Jakubiec, A. and Kijowski, J. (1989). J. Math. Phys. 30, 1077–1080.

    Google Scholar 

  35. García, A., Lämmerzahl, C., Macías, A., Mielke, E. W., and Socorro, J. (1998). Phys. Rev. D 57, 3457–3462.

    Google Scholar 

  36. García, A., Hehl, F. W., Lämmerzahl, C., Macías, A., and Socorro, J. (1998). Class. Quantum Grav. 15, 1793–1799.

    Google Scholar 

  37. García, A., Macías, A., and Socorro, J. (1999). Class. Quantum Grav. 16, 93–100.

    Google Scholar 

  38. García, A., Macías, A., Puetzfeld, D., and Socorro, J. (2000). Phys. Rev. D 62, 044021.

    Google Scholar 

  39. Macías, A., Lämmerzahl, C., and García, A. (2000). J. Math. Phys. 41, 6369–6380.

    Google Scholar 

  40. Levitin, M. R. (1992). C. R. Acad. Sci. Sér. I 315, 925–930.

    Google Scholar 

  41. Safarov, Yu. and Vassiliev, D. (1998). The asymptotic distribution of eigenvalues of partial differential operators, American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  42. Aslanyan, A. G. and Lidskii, V. B. (1974). The distribution of eigenfrequencies of thin elastic shells, Nauka, Moscow. In Russian.

    Google Scholar 

  43. Gol'denveizer, A. L., Lidskii, V. B., and Tovstik, P. E. (1979). Free vibrations of thin elastic shells, Nauka, Moscow. In Russian.

    Google Scholar 

  44. Sakharov, A. D. (2000). Gen. Rel. Grav. 32, 365–367.

    Google Scholar 

  45. Schmidt, H.-J. (2000). Gen. Rel. Grav. 32, 361–363.

    Google Scholar 

  46. Macrae, K. I. and Riegert, R. J. (1981). Phys. Rev. D 24, 2555–2560.

    Google Scholar 

  47. Frenkel, A. and Brecher, K. (1982). Phys. Rev. D 26, 368–372.

    Google Scholar 

  48. Stelle, K. S. (1978). Gen. Rel. Grav. 9, 353–371.

    Google Scholar 

  49. Müller, V. and Schmidt, H.-J. (1985). Gen. Rel. Grav. 17, 769–781.

    Google Scholar 

  50. Schmidt, H.-J. and Müller, V. (1985). Gen. Rel. Grav. 17, 971–980.

    Google Scholar 

  51. Jakubiec, A. and Kijowski, J. (1988). Phys. Rev. D 37, 1406–1409.

    Google Scholar 

  52. Kijowski, J. (1978). Gen. Rel. Grav. 9, 857–877.

    Google Scholar 

  53. Kijowski, J. (1980s). Lecture Notes in Math. 836, 455–461.

    Google Scholar 

  54. Ferraris, M. and Kijowski, J. (1981). Lett. Math. Phys. 5, 127–135.

    Google Scholar 

  55. Ferraris, M. and Kijowski, J. (1982). Gen. Rel. Grav. 14, 165–180.

    Google Scholar 

  56. Jakubiec, A. and Kijowski, J. (1987). Gen. Rel. Grav. 19, 719–727.

    Google Scholar 

  57. Bach, R. (1921). Math. Zeitschr. 9, 110–135.

    Google Scholar 

  58. Dzhunushaliev, V. and Schmidt, H.-J. (2000). J. Math. Phys. 41, 3007–3015.

    Google Scholar 

  59. Schmidt, H.-J. (1984). Ann. Phys. (Leipz.) 41, 435–436; See gr-qc/0105108.

    Google Scholar 

  60. Berestetskii, V. B., Lifshitz, E. M., and Pitaevskii, L. P. (1982). Quantum Electrodynamics (Course of Theoretical Physics vol 4) 2nd edn, Pergamon Press, Oxford.

    Google Scholar 

  61. Buchbinder, I. L. and Kuzenko, S. M. (1998). Ideas and Methods of Supersymmetry and Supergravity, Institute of Physics Publishing, Bristol.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vassiliev, D. Pseudoinstantons in Metric-Affine Field Theory. General Relativity and Gravitation 34, 1239–1265 (2002). https://doi.org/10.1023/A:1019730602253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019730602253

Navigation