Skip to main content
Log in

Abscisic acid, gibberellin and cell viability in cereal aleurone

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The aleurone layer of cereals is a secretory tissue whose activity is regulated by abscisic acid (ABA) and gibberellins (GAs). Whereas GA triggers enzyme synthesis and secretion and initiates a program that culminates in cell death, ABA prevents enzyme production and cell death. Reactive oxygen species (ROS) are key players in regulating cell viability and GA sensitizes the aleurone cell to ROS. Sensitivity of GA-treated cells results in part from a reduction in steady-state amounts of mRNAs encoding enzymes that scavenge ROS. mRNAs encoding catalase, superoxide dismutase and ascorbate peroxidase are almost undetectable in aleurone layers 24 h after incubation in GA. For layers incubated in ABA, however, the amounts of these mRNAs increase. Western blotting and enzyme activity assays confirm that GA but not ABA reduced the amount and activity of ROS scavenging enzymes (Fath et al., 2001b). Substantial amounts of ROS are produced by enzymes engaged in lipid metabolism, and by the electron transport chain in the mitochondria. Aleurone layers contain abundant stores of triglycerides and ROS are produced as these lipids are rapidly converted to sugars. We hypothesize that the ROS produced in GA-treated aleurone cells bring about cell death by disrupting the plasma membrane. Aleurone cells incubated in ABA, on the other hand, are better able to maintain redox balance. ABA does not initiate rapid triglyceride metabolism, and the activities of ROS-scavenging enzymes remain high in ABA-treated cells. We conclude that GA initiates a metabolic cascade in aleurone cells that results in death from ROS. ABA maintains viability by keeping ROS under control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleford, N.E.J. & J.R. Lenton, 1997. Hormonal regulation of alpha-amylase gene expression in germinating wheat (Triticum aestivum) grains. Physiol Plant 100: 534–542.

    Article  CAS  Google Scholar 

  • Bethke, P.C., A. Fath & R.L. Jones, 2001. Regulation of viability and cell death by hormones in cereal aleurone. Int J Plant Physiol 158: 429–438.

    Article  CAS  Google Scholar 

  • Bethke, P.C., S. Hillmer & R.L. Jones, 1996. Isolation of intact protein storage vacuoles from barley aleurone. Plant Physiol 110: 521–529.

    PubMed  CAS  Google Scholar 

  • Bethke, P.C. & R.L. Jones, 2001. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J. 25: 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Bethke, P.C., J.E. Lonsdale, A. Fath & R.L. Jones, 1999. Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11: 1033–1045.

    Article  PubMed  CAS  Google Scholar 

  • Bethke, P.C., S.J. Swanson, S. Hillmer & R.L. Jones, 1998. From storage compartment to lytic organelle: the metamorphosis of the aleurone protein storage vacuole. Ann Bot 82: 399–412.

    Article  CAS  Google Scholar 

  • Bewley, J.D., 1997. Seed germination and dormancy. Plant Cell 9: 1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Bush, D.S., M.-J. Cornejo, C.-N. Huang & R.L. Jones, 1986. Ca2+-stimulated secretion of α-amylase during development in barley aleurone protoplasts. Plant Physiol 82: 566–574.

    PubMed  CAS  Google Scholar 

  • Fath, A., V. Belligni, P. Bethke, Y. Spiegel & R.L. Jones, 2001a. Signaling in the cereal aleurone: Hormones, reactive oxygen species and cell death. New Phytol 151: 99–107.

    Article  CAS  Google Scholar 

  • Fath, A., P. Bethke & R.L. Jones, 2001b. Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol 126: 156–166.

    Article  PubMed  CAS  Google Scholar 

  • Fath, A., P. Bethke, J. Lonsdale, R. Meza-Romero & R.L. Jones, 2000. Programmed cell death in cereal aleurone. Plant Mol Biol 44: 255–266.

    Article  PubMed  CAS  Google Scholar 

  • Fath, A., P.C. Bethke & R.L. Jones, 1999. Barley aleurone cell death is not apoptotic: Characterization of nuclease activities and DNA degradation. Plant J 20: 305–315.

    CAS  Google Scholar 

  • Feussner, I. & H. Kindl, 1992. A lipoxygenase is the main lipid body protein in cucumber and soybean cotyledons during the stage of triglyceride mobilization. Febs Letters 298: 223–225.

    Article  PubMed  CAS  Google Scholar 

  • Feussner, I., H. Kuhn & C. Wasternack, 1997. Do specific linoleate 13-lipoxygenases initiate beta-oxidation? Febs Letters 406: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Feussner, I., C. Wasternack, H. Kindl & H. Kuhn, 1995. Lipoxygenase-catalyzed oxygenation of storage lipids is implicated in lipid mobilization during germination. Proc Nat Acad Sci USA 92: 11849–11853.

    Article  PubMed  CAS  Google Scholar 

  • Fincher, G.B., 1989. Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev. Plant Physiol Plant Mol Biol 40: 305–346.

    Article  CAS  Google Scholar 

  • Fukuda, H., Y. Watanabe, H. Kuriyama, S. Aoyagi, M. Sugiyama, R. Yamamoto, T. Demura & A. Minami, 1998. Programming of cell death during xylogenesis. J Plant Res 111: 253–256.

    CAS  Google Scholar 

  • Gabard, K.A. & R.L. Jones, 1986. Localization of phytase and acid phosphatase isoenzymes in aleurone layers of barley. Physiol Plant 67: 182–192.

    Article  CAS  Google Scholar 

  • Garello, G. & M.T. Le Page-Degivry, 1999. Evidence for the role of abscisic acid in the genetic and environmental control of dormancy in wheat (Triticum aestivum L.). Seed Sci Res 9: 219–226.

    CAS  Google Scholar 

  • Gilroy, S., 1996. Signal transduction in barley aleurone protoplasts is calcium dependent and independent. Plant Cell 8: 2193–2209.

    Article  PubMed  CAS  Google Scholar 

  • Groover, A. & A.M. Jones, 1999. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Haberlandt, G., 1884. 'Physiologische Pflanzenanatomie,' First/Ed. W. Engelman, Leipzig.

    Google Scholar 

  • Hockberger, P.E., T.A. Skimina, V.E. Centonze, C. Lavin, S. Chu, S. Dadras, J.K. Reddy & J.G. White, 1999. Activation of flavincontaining oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Nat Acad Sci USA 96: 6255–6260.

    Article  PubMed  CAS  Google Scholar 

  • Holtman, W.L., J.C. Vredenbregt-Heistek, N.F. Schmitt & I. Feussner, 1997. Lipoxygenase-2 oxygenates storage lipids in embryos of germinating barley. Euro J Biochem 248: 452–458.

    Article  CAS  Google Scholar 

  • Jabs, T., 1999. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57: 231–245.

    Article  PubMed  CAS  Google Scholar 

  • Jones, R.L., 1969. The effect of ultracentrifugation on fine structure and α-amylase production in barley aleurone cells. Plant Physiol 44: 1428–1438.

    PubMed  CAS  Google Scholar 

  • Jones, R.L., 1972. Fractionation of the enzymes of the barley aleurone layer: evidence for a soluble mode of enzyme release. Planta 103: 95–109.

    Article  CAS  Google Scholar 

  • Jones, R.L., 1973. Gibberellic acid and ion release from barley aleurone tissue. Plant Physiol 52: 303–308.

    PubMed  CAS  Google Scholar 

  • Kuo, A., S. Cappelluti, M. Cervantes-Cervantes, M. Rodriguez & D.S. Bush, 1996. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. Plant Cell 8: 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Mrva, K. & D.J. Mares, 1999. Regulation of high pI alpha-amylase synthesis in wheat aleurone by a gene(s) located on chromosome 6B. Euphytica 109: 17–23.

    Article  CAS  Google Scholar 

  • Rhode, A., S. Kurup & M. Holdsworth, 2000. ABI3 emerges from the seed. Trends in Plant Science 5: 418–419.

    Article  Google Scholar 

  • Ritchie, S. & S. Gilroy, 1998. Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiol 116: 765–776.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, S., S.J. Swanson & S. Gilroy, 2000. Physiology of the aleurone layer and starchy endosperm during grain development and early seedling growth: New insights from cell and molecular biology. Seed Sci Res 10: 193–212.

    CAS  Google Scholar 

  • Rock, C.D., 2000. Pathways to abscisic acid-regulated gene expression. New Phytol 148: 357–396.

    Article  CAS  Google Scholar 

  • Sarkkinen, P., P. Kalkkinen, C. Tilgmann, J. Siuro, J. Kervinen & L. Mikola, 1992. Aspartic protease from barley grains is related to mammalian lysosomal cathepsin D. Planta 186: 317–323.

    Article  CAS  Google Scholar 

  • Schmidt, W., J. Hart, P. Filner & K.L. Poff, 1977. Specific inhibition of phototropism in corn seedlings. Plant Physiol 60: 736–738.

    PubMed  CAS  Google Scholar 

  • Song, P. S. & T.A. More, 1968. Mechanism of the photodephosphorylation of menadiol diphosphate. A model for bioquantum conversion. J Am Chem Soc 90: 6507–6515.

    Article  CAS  Google Scholar 

  • Spiteller, G., 2001. Peroxidation of linoleic acid and its relation to aging and age dependent diseases. Mech Aging Devel 122: 617–657.

    Article  CAS  Google Scholar 

  • Stewart, A., H. Nield & J.N.A. Lott, 1988. An investigation of the mineral content of barley grains and seedlings. Plant Physiol 86: 93–97.

    PubMed  CAS  Google Scholar 

  • Sugimoto, N., G. Takeda, Y. Nagato & J. Yamaguchi, 1998. Temporal and spatial expression of the alpha-amylase gene during seed germination in rice and barley. Plant and Cell Physiol 39: 323–333.

    CAS  Google Scholar 

  • Swanson, S., P.C. Bethke & R.L. Jones, 1998. Barley aleurone cells contain two types of vacuoles: Characterization of lytic compartments using fluorescent probes. Plant Cell 13: 685–698.

    Article  Google Scholar 

  • Swanson, S.J. & R.L. Jones, 1996. Gibberellic acid induces vacuolar acidification in barley aleurone. Plant Cell 8: 2211–2221.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, H., 1994. Aging in the plant and animal kingdoms – The role of cell death. Rev Clin Geront 4: 5–20.

    Article  Google Scholar 

  • Trethowan, R.M., 1995. Evaluation and selection of bread wheat (Triticum aestivum L.) for preharvest sprouting tolerance. Aust J Agric Res 46: 463–474.

    Article  Google Scholar 

  • Wang, M., B. Oppedijk, X. Lu, B. Van Duijn & R.A. Schilperoort, 1996. Apoptosis in barley aleurone during germination and its inhibition by abscisic acid. Plant Mol Biol 32: 1125–1134.

    Article  PubMed  CAS  Google Scholar 

  • Wang, M., B.J. Oppedijk, M.P.M. Caspers, G.E.M. Lamers, M.J. Boot, D.N.G. Geerlings, B. Bakhuizen, A.H. Meijer & B. Van Duijn, 1998. Spatial and temporal regulation of DNA fragmentation in aleurone of germinating barley. J Exp Bot 49: 1293–1301.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bethke, P.C., Fath, A., Spiegel, Y.N. et al. Abscisic acid, gibberellin and cell viability in cereal aleurone. Euphytica 126, 3–11 (2002). https://doi.org/10.1023/A:1019659319630

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019659319630

Navigation