Skip to main content
Log in

Loop Groups and Twin Buildings

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In these notes we describe some buildings related to complex Kac–Moody groups. First we describe the spherical building of SLn(ℂ) (i.e. the projective geometry PG(ℂn)) and its Veronese representation. Next we recall the construction of the affine building associated to a discrete valuation on the rational function field ℂ(z). Then we describe the same building in terms of complex Laurent polynomials, and introduce the Veronese representation, which is an equivariant embedding of the building into an affine Kac–Moody algebra. Next, we introduce topological twin buildings. These buildings can be used for a proof which is a variant of the proof by Quillen and Mitchell, of Bott periodicity which uses only topological geometry. At the end we indicate very briefly that the whole process works also for affine real almost split Kac–Moody groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramenko, P.: Twin Buildings and Applications to S-Arithmetic Groups, Lecture Notes in Math. 1641, Springer, New York, 1996.

    Google Scholar 

  2. Abramenko, P. and Mühlherr, B.: Présentations de certaines BN-paires jumelées comme sommes amalgamées, C.R. Acad. Sci. Paris 325 (1997), 701–706.

    Google Scholar 

  3. Abramenko, P. and Ronan, M.: A characterization of twin buildings by twin apartments, Geom. Dedicata 73 (1998), 1–9.

    Google Scholar 

  4. Abramenko, P. and Van Maldeghem, H.: 1-twinnings of buildings, in Math. Z. 238 (2001), 187–203.

    Google Scholar 

  5. Back-Valente, V., Bardy-Panse, N., Ben Massaoud, H. and Rousseau, G.: Formes presque-déployées des algébres de Kac-Moody: Classification et raciness relatives, J. Algebra 171 (1995), 43–96.

    Google Scholar 

  6. Brady, N., McCammond, J. P., Mühlherr, B. and Neumann, W. D.: Non-rigid Coxeter and Artin groups, Preprint, Dortmund (2000).

  7. Bridson, M. R. and Haefliger, A.: Metric Spaces of Non-positive Curvature, Grundlehren Math. Wiss. 319, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  8. Brown, K.: Buildings, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  9. Burns, K. and Spatzier, R.: On topological Tits buildings and their classification, Publ. Math. I.H.E.S. 65 (1987), 5–34.

    Google Scholar 

  10. Charney, R. and Davis, M.: When is a Coxeter system determined by its Coxeter group?, J. London Math. Soc. 61 (2000), 441–461.

    Google Scholar 

  11. Dress, A. and Scharlau, R.: Gated sets in metric spaces, Aequationes Math. 34 (1987), 112–120.

    Google Scholar 

  12. Groβ, C., Kramer, L. and Mühlherr, B.: manuscript in preparation.

  13. Grundhöfer, T. and Knarr, N.: Topology in generalized quadrangles, Topology Appl. 34 (1990), 139–152.

    Google Scholar 

  14. Grundhöfer, T., Knarr, N. and Kramer, L.: Flag-homogeneous compact connected polygons, Geom. Dedicata 55 (1995), 95–114.

    Google Scholar 

  15. Grundhöfer, T., Knarr, N. and Kramer, L.: Flag-homogeneous compact connected polygons II, Geom. Dedicata 83 (2000), 1–29.

    Google Scholar 

  16. Grundhöfer, T., Knarr, N. and Kramer, L.: The classification of compact homogeneous Tits buildings, manuscript in preparation.

  17. Grundhöfer, T. and Van Maldeghem, H.: Topological polygons and affine buildings of rank three, Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 459–479.

    Google Scholar 

  18. Heintze, E. and Liu, X.: Homogeneity of infinite-dimensional isoparametric submanifolds, Ann. Math. 149 (1999), 149–181.

    Google Scholar 

  19. Heintze, E., Palais, R., Terng, C.-l. and Thorbergsson, G.: Hyperpolar actions on symmetric spaces, In: S.-T. Yau (ed.), Geometry, Topology, and Physics, for Raoul Bott, (Cambridge, MA, 1993) International Press, Somerville, MA, 1995, pp. 214–245.

    Google Scholar 

  20. Jäger, M.: Topologische Gebäude, Dissertation, Univ. Kiel (1994).

  21. Knarr, N.: The nonexistence of certain topological polygons, Forum Math. 2 (1990), 603–612.

    Google Scholar 

  22. Knarr, N. and Kramer, L.: Projective planes and isoparametric hypersurfaces, Geom. Dedicata 58 (1995), 193–202.

    Google Scholar 

  23. Kramer, L.: Compact polygons, Dissertation, Univ. Tübingen (1994). available as math.DG/0104064 in the Mathematics ArXiv, http://front.math.ucdavis.edu/math.DG/ 0104064

  24. Kramer, L.: Homogeneous spaces, Tits buildings, and isoparametric hypersurfaces, to appear in Mem. Amer. Math. Soc. (2002).

  25. Kühne, R.: Topologische sphärische Tits-Gebäude, Dissertation, Univ. Braunschweig (1994) Mitt. Math. Seminar Giessen 219 (1994).

  26. Kühne, R. and Löwen, R.: Topological projective spaces, Abh. Math. Seminar Univ. Hamburg 62 (1992), 1–9.

    Google Scholar 

  27. Mitchell, S. A.: Quillen's theorem on buildings and the loops on a symmetric space, Enseign. Math. 34 (1988), 123–166.

    Google Scholar 

  28. Mühlherr, B.: A rank 2 characterization of twinnings, European J. Combin. 10 (1998), 603–612.

    Google Scholar 

  29. Mühlherr, B.: On the existence of 2-spherical twin buildings, Habilitationsschrift, Univ. Dortmund (1999).

  30. Mühlherr, B.: On isomorphisms between Coxeter groups, Des. Codes Cryptogr. 21 (2000), 188–189.

    Google Scholar 

  31. Mühlherr, B. and Ronan, M.: Local to global structure in twin buildings, Invent. Math. 122 (1995), 71–81.

    Google Scholar 

  32. Palais, R. and Terng, C.-l.: Critical Point Theory and Submanifold Geometry, Lecture Notes in Math. 1353, Springer, New York, 1988.

    Google Scholar 

  33. Pinkall, U. and Thorbergsson, G.: Examples of infinite dimensional isoparametric submanifolds, Math. Z. 205 (1990), 279–286.

    Google Scholar 

  34. Pressley, A. and Segal, G.: Loop Groups, Oxford Univ. Press, 1986, corr. reprint, 1988.

  35. Ronan, M.: Lectures on Buildings, Perspect. Math. 7, Academic Press, Boston, MA, 1989.

    Google Scholar 

  36. Ronan, M.: Local isometries of twin buildings, Math. Z. 234 (2000), 435–455.

    Google Scholar 

  37. Ronan, M. and Tits, J.: Twin trees I, Invent. Math. 116 (1994), 463–479.

    Google Scholar 

  38. Rousseau, G.: On forms of Kac-Moody algebras, In: W. Haboush and B. Parshall (eds), Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods, (University Park, PA, 1991), Proc. Sympos. Pure Math. 56, Amer. Math. Soc., Providence, 1994, pp. 393–399.

    Google Scholar 

  39. Salzmann, H.: Topological planes, Adv. Math. 2 (1967), 1–60.

    Google Scholar 

  40. Salzmann, H., Betten, D., Grundhöfer, T., Hähl, H., Löwen, R. and Stroppel, M.: Compact Projective Planes, Expos. in Math. 21, De Gruyter, Berlin, 1995.

    Google Scholar 

  41. Scharlau, R.: Buildings, In: F. Buekenhout (ed.), Handbook of Incidence Geometry, North Holland, Amsterdam, 1995, pp. 477–645.

    Google Scholar 

  42. Schroth, A.: Topological Circle Planes and Topological Quadrangles, Pitman Res. Notes Math. 337 Longman, Harlow, 1995.

    Google Scholar 

  43. Smale, S.: Generalized Poincaré's conjecture in dimensions greater than four, Ann. Math. 74 (1961), 391–406.

    Google Scholar 

  44. Stallings, J.: Polyhedral homotopy-spheres, Bull Amer. Math. Soc. 66 (1960), 485–488.

    Google Scholar 

  45. Terng, C.-l.: Recent progress in submanifold geometry, In: R. Green and S.-T. Yau (ed.), AMS Summer Research Institute on Differential Geometry, (Los Angeles, CA, 1990), Proc. Sympos. Pure Math. 54 (1993), 439–484.

  46. Thorbergsson, G.: Isoparametric foliations and their buildings, Ann. Math. 133 (1991), 429–446.

    Google Scholar 

  47. Thorbergsson, G.: A survey on isoparametric hypersurfaces and their generalizations, In: F. Dillen and L. Verstraelen (eds), Handbook of Differential Geometry, North-Holland, Amsterdam, 2000, pp. 963–995.

    Google Scholar 

  48. Tits, J.: Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Math. 386, Springer, New York, 1974.

    Google Scholar 

  49. Tits, J.: Buildings and group amalgamations, In: E. F. Robertson and C. M. Campbell, (eds), Proceedings of Groups — St Andrews 1985, Cambridge Univ. Press, Cambridge, 1986, pp. 110–127.

    Google Scholar 

  50. Tits, J.: Immeubles jumelés, Résuméde cours. Annuaire du Collège de France, 89e année (1988-1989) 81–95. Annuaire du Collège de France, 90e année (1989-1990) 87-103. Annuaire du Collège de France, 98e année (1997-1998) 97–112.

  51. Tits, J.: Twin buildings and groups of Kac-Moody type, In: M. Liebeck and J. Saxl (eds), Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Notes Ser., Cambridge Univ. Press, 1992, pp. 249–286.

  52. Van Maldeghem, H.: Generalized Polygons, Monogr. Math. 93, Birkhäuser, Basel, 1998.

    Google Scholar 

  53. Zeeman, E. C.: The generalized Poincaréconjecture, Bull Amer. Math. Soc. 67 (1961), 270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a Heisenberg fellowship by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, L. Loop Groups and Twin Buildings. Geometriae Dedicata 92, 145–178 (2002). https://doi.org/10.1023/A:1019603827308

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019603827308

Navigation