Skip to main content
Log in

Sensitivity of best recovery in the Sobolev spaces \(W_\infty ^{r,d} \), \(\widetilde W_\infty ^{r,d}\)for perturbed sampling

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Let \(I^d \)be the d‐dimensional cube, \(I^d = [0,1]^d \), and let \(F \ni f \mapsto Sf \in L_\infty (I^d ) \)be a linear operator acting on the Sobolev space F, where Fis either

$$$$

or

$$$$

where

$$\left\| f \right\|_F = \sum\limits_{\left| m \right| = r} {\mathop {{\text{esssup}}}\limits_{x \in I^d } \left| {\frac{{\partial f^{\left| m \right|} }} {{\partial x_1^{m_1 } \partial x_2^{m_2 } \cdot \cdot \cdot \partial x_d^{m_d } }}(x)} \right|.} $$

We assume that the problem elements fsatisfy the condition \(\sum\nolimits_{\left| m \right| = r} {{\text{esssup}}} _{x \in I^d } \left| {f^{(m)} (x)} \right| \leqslant 1 \)and that Sis continuous with respect to the supremum norm.

We study sensitivity of optimal recovery of Sfrom inexact samples of ftaken at npoints forming a uniform grid on \(I^d \). We assume that the inaccuracy in reading the sample vector is measured in the pth norm and bounded by a nonnegative number δ. The sensitivity is defined by the difference between the optimal errors corresponding to the exact and perturbed readings, respectively. Our main result is that this difference is bounded by \(\mathcal{A}\delta \), where \(\mathcal{A} \)is a positive constant independent of the number of samples. This indicates that the curse of dimension, which badly affects the optimal errors, does not extend to sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Abgrall and T. Sonar, On the use of Mühlbach expansions in the recovery step of ENO methods, Numer. Math. 76(1) (1997) 1-25.

    Google Scholar 

  2. S. Amat, F. Aràndiga, A. Cohen and R. Donat, Tensor product multiresolution analysis with error control, Technical Report GrAN-99-4, Department de Matemàtica Aplicada, University of València (1999).

  3. F. Aràndiga, R. Donat and A. Harten, Multiresolution based on weighted averages of the hat function I: Linear reconstruction operators, SIAM J. Numer. Anal. 36(1) (1999) 160-203.

    Google Scholar 

  4. F. Aràndiga, R. Donat and A. Harten, Multiresolution based on weighted averages of the hat function II: Nonlinear reconstruction operators, SIAM J. Sci. Comput. 20(3) (1999) 1053-1093.

    Google Scholar 

  5. A. Cohen, I. Daubechies and J. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992) 485-560.

    Google Scholar 

  6. R. Donat, Studies on error propagation for certain nonlinear approximations to hyperbolic equations: Discontinuities in derivative, SIAM J. Numer. Anal. 31 (1994) 655-679.

    Google Scholar 

  7. M. Guichaoua, Analyses multiréolution biorthogonales associés àla réolution d'éuations aux derivés partielles, Ph.D. thesis, Ecole Supéieure de Méanique de Marseille, Universitéde la Mediterrané Aix-Marseille II (1999).

  8. A. Harten, ENO schemes with subcell resolution, J. Comput. Phys. 83 (1989) 148-184.

    Google Scholar 

  9. A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math. 12 (1993) 153-192.

    Google Scholar 

  10. A. Harten, Multiresolution representation of data II: General framework, SIAM J. Numer. Anal. 33 (1996) 1205-1256.

    Google Scholar 

  11. A. Harten, B. Engquist, S. Osher and S. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III, J. Comput. Phys. 71 (1987) 231-303.

    Google Scholar 

  12. A. Harten and I. Yad-Shalom, Fast multiresolution algorithms for matrix-vector multiplication, SIAM J. Numer. Anal. 371 (1994) 1191-1218.

    Google Scholar 

  13. W. Sweldens, The lifting scheme: a customer-design construction of biorthogonal wavelets, Appl. Comput. Harmon. Anal. 3(2) (1996) 186-200.

    Google Scholar 

  14. W. Sweldens, The lifting scheme: a construction of second generation wavelets, SIAM J. Math. Anal. 29(2) (1998) 511-546 (electronic).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kowalski, M.A. Sensitivity of best recovery in the Sobolev spaces \(W_\infty ^{r,d} \), \(\widetilde W_\infty ^{r,d}\)for perturbed sampling. Numerical Algorithms 23, 251–261 (2000). https://doi.org/10.1023/A:1019152001173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019152001173

Navigation