Skip to main content
Log in

A Fluorescence Quenching Method for Estimating Chelating Groups in Chelate-Conjugated Macromolecules

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

A terbium–dipicolinic acid (Tb-DPA) fluorescence quenching method for estimating free chelating groups conjugated to protein molecules was developed. This method was based on competitive displacement of DPA from binding to terbium by stronger chelating groups such as diethylenetriaminepentaacetic acid (DTPA), EDTA, nitrilotriacetic acid (NTA), DTPA-conjugated bovine serum albumin (BSA-DTPA), or DTPA-conjugated immunoglobulin G (IgG-DTPA), resulting in a significant reduction in terbium fluorescence. The chelating ability of the tested reagent, from high to low, was in the following order: BSA-DTPA > DTPA > IgG-DTPA > EDTA, NTA. At low terbium concentrations, the reduction was linear for DTPA. This fluorescence quenching method was not only rapid, simple, and as accurate as conventional radioisotopic or chromatographic methods, but also sensitive and reproducible. The detection limit was 10 nM for DTPA. The interrun coefficient of variation was at most 8%. The advantage of this method over other indirect methods is that it reveals the actual chelating ability of the tested macromolecule, unencumbered by complicating factors such as trace metal contamination and dimer/polymer formation during conjugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. H. L. Hagan, S. E. Halpern, A. Chen, L. Krishnan, J. Fincke, R. M. Bartholomew, G. S. David, and D. Carlo. In vivo kinetics of radiolabeled monoclonal anti-CEA antibodies in animal models. J. Nucl. Med. 26:1418–1423 (1985).

    Google Scholar 

  2. A. C. Perkins and M. V. Pimm. Differences in tumours and normal tissue concentrations of iodine and indium-labelled monoclonal antibody. Eur. J. Nucl. Med. 11:295–299 (1985).

    Google Scholar 

  3. D. A. Scheinberg, M. Strand, and O. A. Gansow. Tumor imaging with radioactive metal chelates conjugated to monoclonal antibodies. Science 215:1511–1513 (1982).

    Google Scholar 

  4. D. J. Hnatowich, W. W. Layne, E. L. Childs, D. Lanteigne, M. A. Davis, T. W. Griffin, and P. W. Doherty. Radioactive labeling of antibody: A simple and efficient method. Science 220:613–615 (1983).

    Google Scholar 

  5. B. M. Kinsey, R. M. Macklis, J. M. Ferrara, W. W. Layne, S. J. Burakoff, and A. I. Kassis. Efficient conjugation of DTPA to an IgM monoclonal antibody in ascites fluid. Int. J. Med. Biol. 15:285–292 (1988).

    Google Scholar 

  6. C. C. Badger, K. A. Krohn, A. V. Peterson, H. Shulman, and I. D. Bernstein. Experimental radiotherapy of murine lymphoma with 131-I-labeled anti-Thy 1.1 monoclonal antibody. Cancer Res. 45:1536–1544 (1985).

    Google Scholar 

  7. M. W. Brechbiel, O. A. Gansow, R. W. Atcher, J. Schlom, J. Esteban, D. E. Simpson, and D. Colcher. Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorg. Chem. 25:2772–2781 (1986).

    Google Scholar 

  8. D. J. Hnatowich, T. W. Griffin, C. Kosciuczyk, M. Rusckowski, R. L. Childs, D. Shealy, and P. W. Doherty. Pharmacokinetics of an indium-111 labeled monoclonal antibody in cancer patients. J. Nucl. Med. 26:849–858 (1985).

    Google Scholar 

  9. J. Chatal, J. Saccavin, and P. Fumoleau. Immunoscintigraph of colon carcinoma. J. Nucl. Med. 25:307–314 (1984).

    Google Scholar 

  10. J. Mach, J. Chatal, and J. Lumbroso. Tumor localization in patients by radiolabeled monoclonal antibodies against colon carcinoma. Cancer Res. 43:5593–5600 (1983).

    Google Scholar 

  11. D. C. Sullivan, J. S. Silva, and C. E. Cox. Localization of I-131 labeled goat and primate anti-carcinoembryonic antigen (CEA) antibodies in patient with cancer. Invest. Radiol. 17:350–355 (1982).

    Google Scholar 

  12. J. Wilschut, N. Duzgunes, R. Fraley, and D. Papahadjopoulos. Studies on the mechanism of membrane fusion: Kinetic of calcium ion induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents. Biochemistry 19:6011–6021 (1980).

    Google Scholar 

  13. O. H. Lowry, N. J. Rosebrough, A. B. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 153:265–275 (1951).

    Google Scholar 

  14. K. J. Hwang. Liposome Technology, CRC Press, Boca Raton, FL, 1984.

    Google Scholar 

  15. M. W. Sundberg, C. F. Meares, and D. A. Goodwin. Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA. J. Med. Chem. 17:1304–1307 (1974).

    Google Scholar 

  16. C. F. Meares, M. J. Mccall, D. T. Reardan, D. A. Goodwin, C. I. Diamanti, and M. Mctigue. Conjugation of antibodies with bifunctional chelating agent: Isothiocyanate and bromaacetamide reagents, methods of analysis, and subsequent addition of metal ions. Anal. Biochem. 142:68–78 (1984).

    Google Scholar 

  17. A. Oser, W. K. Roth, and G. Valet. Sensitive non-radioactive dot-blot hybridization using DNA probes labelled with chelate group substituted psoralen and quantitative detection by europium ion fluorescence. Nucl. Acid Res. 16:1181–1196 (1988).

    Google Scholar 

  18. C. H. Paik, P. R. Murphy, W. C. Eckelman, W. A. Volkert, and R. C. Reba. Optimization of the DTPA mixed-anyhydride reaction with antibodies at low concentration. J. Nucl. Med. 24:932–936 (1983).

    Google Scholar 

  19. P. Bohlen, S. Stein, W. Dairman, and S. Udenfriend. Flurometric assay of proteins in the nanogram range. J. Biochem. Biophys. 155:213–220 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Karl J. Hwang: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W., Hwang, K.J. & Lee, V.H.L. A Fluorescence Quenching Method for Estimating Chelating Groups in Chelate-Conjugated Macromolecules. Pharm Res 10, 204–207 (1993). https://doi.org/10.1023/A:1018974424624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018974424624

Navigation