Skip to main content
Log in

Peptide Stability in Drug Development. II. Effect of Single Amino Acid Substitution and Glycosylation on Peptide Reactivity in Human Serum

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The determination of peptide stability in human serum (HS) or plasma constitutes a powerful screening assay for eliminating unstable peptides from further development. Herein we report on the stability in HS of several major histocompatibility complex (MHC)-binding peptides. Some of these peptides are in development for the novel treatment of selected autoimmune disorders such as rheumatoid arthritis and insulin-dependent diabetes. For most of the 1-amino acid peptides studied, the predominant degradation mechanism is exopeptidase-catalyzed cleavage. Peptides that were protected by d-amino acids at both termini were found to be more stable than predicted, based on additivity of single substitutions. In addition, N-acetylglucosamine glycopeptides were significantly stabilized, even when the glycosylation site was several amino acids from the predominant site(s) of cleavage. This indicates that long-range stabilization is possible, and likely due to altered peptide conformation. Finally, the effect of single amino acid substitutions on peptide stability in HS was determined using a model set of poly-Ala peptides which were protected from exopeptidase cleavage, allowing the study of endopeptidase cleavage pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. F. Powell, H. Grey, F. C. A. Gaeta, A. Sette, and S. Colon. Peptide stability in drug development: A comparison of peptide reactivity in different biological media. J. Pharm. Sci. 81:731–735 (1992).

    Google Scholar 

  2. A. Sette, D. O'Sullivan, J. Kreiger, R. W. Karr, A. G. Lamont, and H. Grey. MHC-antigen-T cell interactions: An overview. Immunology 3:195–202 (1991).

    Google Scholar 

  3. A. G. Lamont, M. F. Powell, S. Colon, C. Miles, H. Grey, and A. Sette. The use of peptide analogs with improved stability and MHC binding capacity to inhibit antigen presentation in vitro and in vivo. J. Immunol. 144:2493–2498 (1990).

    Google Scholar 

  4. D. O'Sullivan, T. Arrhenius, J. Sidney, M.-F. del Guercio, M. Albertson, M. Wall, C. Oseroff, S. Southwood, S. Colon, F. C. A. Gaeta, and A. Sette. On the interaction of promiscuous antigenic peptides with different DR alleles. J. Immunol. 147:2663–2669 (1991).

    Google Scholar 

  5. C. Widmann, J. L. Marynaski, P. Romero, and G. Corradin. Differential stability of antigenic MHC class I restricted synthetic peptides. J. Immunol. 147:3745–3751 (1991).

    Google Scholar 

  6. L. D. Falo, Jr., L. J. Colarusso, B. Benacerraf, and K. L. Rock. Serum proteases alter the antigenicity of peptides presented by class I major histocompatibility complex molecules. Proc. Natl. Acad. Sci. USA 89:8347–8350 (1992).

    Google Scholar 

  7. M. R. Ruff, B. M. Martin, E. I. Ginns, W. L. Farrar, and C. B. Pert. CD4 receptor binding peptides that block HIV infectivity cause human monocyte chemotaxis. FEBS Lett. 211:17–22 (1987).

    Google Scholar 

  8. G. Y. Ishioka, A. G. Lamont, D. Thomson, N. Bulbow, F. C. A. Gaeta, A. Sette, and H. Grey. MHC interaction and T cell recognition of carbohydrates and glycopeptides. J. Immunol. 148:2446–2451 (1992).

    Google Scholar 

  9. R. B. Merrifield. Automated synthesis of peptides. Science 150:178–185 (1965).

    Google Scholar 

  10. L. Urge, L. Gorbics, and L. Otvos, Jr. Chemical glycosylation of peptide T at natural and artificial glycosylation sites stabilizes or rearranges the dominant reverse-turn structure. Biochem. Biophys. Res. Commun. 184:1125–1132 (1992).

    Google Scholar 

  11. N. Jezyk, W. Rubas, and G. M. Grass. Permeability characteristics of various intestinal regions of rabbit, dog and monkey. Pharm. Res. 9:1580–1586 (1992).

    Google Scholar 

  12. J. R. McDermott, A. I. Smith, J. A. Biggins, J. A. Hardy, P. R. Dodd, and J. A. Edwardson. Degradation of leutinizing hormone-releasing hormone by serum and plasma in-vitro. Regul. Peptides 2:69–79 (1981).

    Google Scholar 

  13. R. Walter, A. Neidle, and N. Marks. Significant differences in the degradation of Pro-Leu-Gly-NH2 by human serum and that of other species. Proc. Fed. Soc. Exp. Biol. Med. 148:98–103 (1975).

    Google Scholar 

  14. C. J. Springer, G. A. Eberlein, V. E. Eysselein, M. Schaeffer, H. Goebell, and J. Calam. Accelerated in vitro degradation of CCK-58 in blood and plasma of patients with acute pancreatitis. Clin. Chim. Acta 198:245–255 (1991).

    Google Scholar 

  15. N. White, E. C. Griffiths, S. L. Jeffcoate, R. D. G. Milner, and M. A. Preece. Age-Related changes in the degradation of thyrotrophin releasing hormone by human and rat serum. J. Endocrin. 86:397–402 (1980).

    Google Scholar 

  16. L. A. Frohman, T. R. Downs, T. C. Williams, E. P. Heimer, Y.-C. E. Pan, and A. M. Felix. Rapid enzymatic degradation of growth hormone releasing hormone by plasma in vitro and in vivo to a biologically inactive product cleaved at the NH2 terminus. J. Clin. Invest. 78:906–913 (1986).

    Google Scholar 

  17. V. J. Wroblewski. Mechanism of deiodination of 125I-human growth hormone in vivo. Biochem. Pharmacol. 42:889–897 (1991).

    Google Scholar 

  18. G. A. Heavner, D. J. Kroon, T. Audhya, and G. Goldstein. Biologically active analogues of thymopentin with enhanced enzymatic stability. Peptides 7:1015–1019 (1986).

    Google Scholar 

  19. J. K. McDonald and A. J. Barrett (eds.). Mammalian Proteases—A Glossary and Bibliography: Exopeptidases, Academic Press, New York, 1986.

    Google Scholar 

  20. D. E. Benovitz and A. F. Spatola. Enkephalin pseudopeptides: Resistance to in vitro proteolytic degradation afforded by amide bond replacements extends to remote sites. Peptides 6:257–261 (1985).

    Google Scholar 

  21. J. F. Fisher, A. W. Harrison, G. L. Bundy, K. F. Wilkinson, B. D. Rush, and M. J. Ruwart. Peptide to glycopeptide: Glycosylated oligopeptide renin inhibitors with attenuated in vivo clearance properties. J. Med. Chem. 34:3140–3143 (1991).

    Google Scholar 

  22. D. Picone, P. A. Temussi, M. Marastoni, R. Tomatis, and A. Motta. A 500 MHz study of peptide T in DMSO solution. FEBS Lett. 231:159–163 (1988).

    Google Scholar 

  23. N. Cotelle, M. Lohez, P. Cotelle, and J.-P. Henichart. Conformational study of the threonine rich C-terminal pentapeptide of peptide T. Biophys. Biochem. Res. Commun. 171:596–602 (1990).

    Google Scholar 

  24. M. Marastoni, S. Salvadori, G. Balboni, S. Spisani, R. Gavioli, S. Traniello, and R. Tomatis. Synthesis, metabolic and chemotactic activity of peptide T and its analogues. Int. J. Peptide Protein Res. 35:81–88 (1990).

    Google Scholar 

  25. T. S. Jardetzky, J. S. Gorga, R. Busch, J. Rothbard, J. L. Strominger, and D. C. Wiley. Peptide stability to HLA-DR1: A peptide with most residues substituted to alanine retains MHC binding. EMBO J. 9:1797–1803 (1990).

    Google Scholar 

  26. T. Yoshimoto, K. Agita, R. Walter, M. Koida, and D. Tsuru. Post proline cleaving enzyme. Synthesis of a new fluorogenic substrate and the endopeptidase in rat tissue and body fluids of man. Biochim. Biophys. Acta 569:184–192 (1979).

    Google Scholar 

  27. D. W. Heinz, W. A. Baase, and B. W. Matthews. Folding and function of a T4 lysozyme containing 10 consecutive alanines illustrate the redundancy of information in an amino acid sequence. Proc. Natl. Acad. Sci. 89:3751–3755 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powell, M.F., Stewart, T., Jr Otvos, L. et al. Peptide Stability in Drug Development. II. Effect of Single Amino Acid Substitution and Glycosylation on Peptide Reactivity in Human Serum. Pharm Res 10, 1268–1273 (1993). https://doi.org/10.1023/A:1018953309913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018953309913

Navigation