Skip to main content
Log in

Formulation Design of Acidic Fibroblast Growth Factor

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The design of an aqueous formulation for acidic fibroblast growth factor (aFGF) requires an understanding of the type of compounds that can either directly or indirectly stabilize the protein. To this end, spectrophotometric turbidity measurements were initially employed to screen the ability of polyanionic ligands, less specific compounds, and variations in solution conditions (temperature and pH) to stabilize aFGF against heat-induced aggregation. It was found that in addition to the well-known protection of aFGF by heparin, a surprisingly wide variety of polyanions (including small sulfated and phosphorylated compounds) also stabilizes aFGF. These polyanionic ligands are capable of raising the temperature at which the protein unfolds by 15–30°C. Many commonly used excipients were also observed to stabilize aFGF in both the presence and the absence of heparin. High concentrations of some of these less specific agents are also able to increase the temperature of aFGF thermal unfolding by as much as 6–12°C as shown by circular dichroism and differential scanning calorimetry. Other compounds were found which protect the chemically labile cysteine residues of aFGF from oxidation. Aqueous formulations of aFGF were thus designed to contain both a polyanionic ligand that enhances structural integrity by binding to the protein and chelating agents (e.g., EDTA) to prevent metal ion-catalyzed oxidation of cysteine residues. While room-temperature storage (30°C) leads to rapid inactivation of aFGF in physiological buffer alone, several of these aFGF formulations are stable in vitro for at least 3 months at 30°C. Three aFGF topical formulations were examined in an impaired diabetic mouse model and were found to be equally capable of accelerating wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. H. Burgess and T. Maciag. The heparin-binding (fibroblast) growth factor family of proteins. Annu. Rev. Biochem. 58:575–606 (1989).

    Google Scholar 

  2. A. Baird and P. Böhlen. Fibroblast growth factors. In M. B. Sporn and A. B. Roberts (eds.), Peptide Growth Factors and Their Receptors 1, Springer-Verlag, Berlin, 1990, pp. 369–418.

    Google Scholar 

  3. P. ten Dijke and K. K. Iwata. Growth factors for wound healing. Biotechnology 7:793–798 (1989).

    Google Scholar 

  4. X. Zhu, H. Komiya, A. Chirino, S. Faham, G. M. Fox, T. Arakawa, B. T. Hsu, and D. C. Rees. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 251:90–93 (1991).

    Google Scholar 

  5. A. E. Eriksson, L. S. Cousens, L. H. Weaver, and B. W. Matthews. Three-dimensional structure of human basic fibroblast growth factor. Proc. Natl. Acad. Sci. USA 88:3441–3445 (1991).

    Google Scholar 

  6. J. Zhang, L. S. Cousens, P. J. Barr, and S. R. Sprang. Three-dimensional structure of human fibroblast growth factor, a structural homolog of interleukin-1β. Proc. Natl. Acad. Sci. USA 88:3446–3450 (1991).

    Google Scholar 

  7. T. Ago, Y. Kitagawa, A. Fujishima, Y. Matsura, and Y. Katsube. Crystal structure of basic fibroblast growth factor at 1.6 Å resolution. J. Biochem. 110:360–363 (1991).

    Google Scholar 

  8. D. Gospodarowicz and J. Cheng. Heparin protects basic and acidic FGF from inactivation. J. Cell. Physiol. 128:475–484 (1986).

    Google Scholar 

  9. T. K. Rosengart, W. V. Johnson, R. Friesel, R. Clark, and T. Maciag. Heparin protects heparin-binding growth factor-1 from proteolytic inactivation in vitro. Biochem. Biophys. Res. Commun. 152:432–440 (1988).

    Google Scholar 

  10. O. Saksela, D. Moscatelli, A. Sommer, and D. B. Rifkin. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J. Cell Biol. 107:743–751 (1988).

    Google Scholar 

  11. S. N. Mueller, K. A. Thomas, J. DiSalvo, and E. M. Levine. Stabilization by heparin of acidic fibroblast growth factor mitogenicity for human endothelial cells in vitro. J. Cell. Physiol. 140:439–448 (1989).

    Google Scholar 

  12. A. Sommer and D. B. Rifkin. Interaction of heparin with human basic fibroblast growth factor: Protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J. Cell. Physiol. 138:215–220 (1989).

    Google Scholar 

  13. K. Vlodavsky, Z. Fuks, R. Ishai-Michaeli, P. Bashkin, E. Levi, G. Korner, R. Bar-Shavit, and M. Klagsbrun. Extracellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis. J. Cell Biochem. 45: 167–176 (1991).

    Google Scholar 

  14. Y. Nakanishi, K. Kihara, K. Mizuno, Y. Masamune, Y. Yoshitake, and K. Nishikawa. Direct effect of basic fibroblast growth factor on gene transcription in a cell-free system. Proc. Natl. Acad. Sci. USA 89:5216–5220 (1992).

    Google Scholar 

  15. R. Wetzel, L. J. Perry, M. G. Mulkerrin, and L. M. Randall. Unfolding and inactivation: Genetic and chemical approaches to the stabilization of T4 lysozyme and human interferon gamma against irreversible thermal denaturation. In J. B. Hook, G. Poste, and J. Schatz (eds.), Protein Design and the Development of New Therapeutics and Vaccines, Plenum Press, New York, 1990, pp. 79–115.

    Google Scholar 

  16. D. G. Greenhalgh, K. H. Strugel, M. J. Murray, and R. Ross. PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am. J. Pathol. 163:1235–1246 (1990).

    Google Scholar 

  17. D. L. Linemeyer, J. G. Menke, L. J. Kelly, J. DiSalvo, D. Soderman, M. T. Schaeffer, S. Ortega, G. Gimenez-Gallego, and K. A. Thomas. Disulfide bonds are neither required, present, nor compatible with full activity of human recombinant acidic fibroblast growth factor. Growth Factors 3:287–298 (1990).

    Google Scholar 

  18. S. Ortega, M. T. Schaeffer, D. Soderman, J. DiSalvo, D. L. Linemeyer, G. Gimenez-Gallego, and K. A. Thomas. Conversion of cysteine to serine residues alters the activity, stability, and heparin dependence of acidic fibroblast growth factor. J. Biol. Chem. 266:5842–5846 (1991).

    Google Scholar 

  19. S. Yamazaki, F. Leu, A. Lee, E. Scattergood, K. Thompson, R. Middaugh, R. Sitrin, and M. King. A novel technique for controlled folding of recombinant aFGF using cross-flow dialysis. FASEB J 5:1186 (1991).

    Google Scholar 

  20. S. Yamazaki and P. DePhillips. Method for the purification of therapeutically active recombinant acidic fibroblast growth factor. Eur. Patent Appl. No. 90201870.4 (1990).

  21. R. A. Copeland, H. Ji, A. J. Halfpenny, R. W. Williams, K. C. Thompson, W. K. Herber, K. A. Thomas, M. W. Bruner, J. A. Ryan, D. Marquis-Omer, G. Sanyal, R. D. Sitrin, S. Yamazaki, and C. R. Middaugh. The structure of human acidic fibroblast growth factor and its interaction with heparin. Arch. Biochem. Biophys. 289:53–61 (1991).

    Google Scholar 

  22. W. H. Burgess. Structure-function studies of acidic fibroblast growth factor. Ann. N.Y. Acad. Sci. 638:89–97 (1992).

    Google Scholar 

  23. B. Steadman, P. A. Trautman, E. Q. Lawson, M. J. Raymond, D. A. Mood, J. A. Thomson, and C. R. Middaugh. A differential scanning calorimetric study of the bovine lens crystallins. Biochemistry 28:9653–9658 (1989).

    Google Scholar 

  24. B. Matuszewska, M. Keogan, J. V. Bondi, D. Fisher, K. Soper, C. M. Hoe, and C. Huber. Acidic fibroblast growth factor: Evaluation of topical formulations in the diabetic mouse wound healing model (submitted for publication).

  25. J. M. Dabora, G. Sanyal, and C. R. Middaugh. Effect of polyanions on the refolding of human acidic fibroblast growth factor. J. Biol. Chem. 266:23637–23640 (1991).

    Google Scholar 

  26. D. B. Volkin, P. K. Tsai, J. M. Dabora, and C. R. Middaugh. The effect of polyanions on the stabilization of acidic fibroblast growth factor. In M. R. Ladisch and A. Bose (eds.), Harnessing Biotechnology for the 21st Century, American Chemical Society, Washington, DC, 1992, pp. 290–293.

    Google Scholar 

  27. D. B. Volkin, P. K. Tsai, J. M. Dabora, J. O. Gress, C. J. Burke, R. J. Linhardt, and C. R. Middaugh. The physical stabilization of acidic fibroblast growth factor by polyanions. Arch. Biophys. Biochem. 300:30–41 (1993).

    Google Scholar 

  28. S. N. Timasheff and T. Arakawa. Stabilization of protein structure by solvents. In T. E. Creighton (ed.), Protein Structure, A Practical Approach, IRL Press, Oxford, 1989, pp 331–345.

    Google Scholar 

  29. J. C. Lee and S. N. Timasheff. The stabilization of proteins by sucrose. J. Biol. Chem. 256:7193–7201 (1981).

    Google Scholar 

  30. D. B. Volkin and A. M. Klibanov. Minimizing protein inactivation. In T. E. Creighton (ed.), Protein Function, A Practical Approach, IRL Press, Oxford, 1989, pp. 1–24.

    Google Scholar 

  31. J. Wu, J. T. Yang, and C. C. S. Wu. β-II conformation of all β-proteins can be distinguished from unordered form by circular dichroism. Anal. Biochem. 200:359–364 (1992).

    Google Scholar 

  32. C. R. Middaugh, H. Mach, C. J. Burke, D. B. Volkin, J. M. Dabora, P. K. Tsai, M. W. Bruner, J. A. Ryan, and K. E. Marfia. Nature of the interaction of growth factors with suramin. Biochemistry 31:9016–9024 (1992).

    Google Scholar 

  33. M. Seno, R. Sasada, M. Iwane, K. Sudo, T. Kurokawa, K. Ito, and K. Igarashi. Stabilizing basic fibroblast growth factor using protein engineering. Biochem. Biophys. Res. Comm. 151:701–708 (1988).

    Google Scholar 

  34. K. A. Engleka and T. Maciag. Inactivation of human fibroblast growth factor-1 (FGF-1) activity by interaction with cooper ions involves FGF-1 dimer formation induced by copper-catalyzed oxidation. J. Biol. Chem. 267:11307–11315 (1992).

    Google Scholar 

  35. Y. M. Torchinsky. Sulfur in Proteins, Pergamon Press, Oxford, 1981.

    Google Scholar 

  36. C. J. Burke, B. L. Steadman, D. B. Volkin, P. K. Tsai, M. W. Bruner, and C. R. Middaugh. The adsorption of proteins to pharmaceutical container surfaces. Int. J. Pharm. 86:89–93 (1992).

    Google Scholar 

  37. H. Mach, C. J. Burke, D. B. Volkin, J. M. Dabora, G. Sanyal, and C. R. Middaugh. Effect of polyanions on the folding and unfolding of acidic fibroblast growth factor. In M. R. Ladisch and A. Bose (eds.), Harnessing Biotechnology for the 21st Century, American Chemical Society, Washington, DC, 1992, pp. 290–293.

    Google Scholar 

  38. H. Mach, D. B. Volkin, C. J. Burke, C. R. Middaugh, R. J. Linhardt, J. Fromm, D. Loganathan, and L. Mattsson. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry, in press (1993).

  39. F. Nachtmann, G. Atzl, and W. D. Roth. Heparin sodium. In K. Florey (ed.), Analytical Profiles of Drug Substances, Vol. 12, Academic Press, New York, 1983, pp. 215–276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, P.K., Volkin, D.B., Dabora, J.M. et al. Formulation Design of Acidic Fibroblast Growth Factor. Pharm Res 10, 649–659 (1993). https://doi.org/10.1023/A:1018939228201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018939228201

Navigation