Skip to main content
Log in

Highly Asymmetric Electrolytes in the Associative Mean-Spherical Approximation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The associate mean-spherical approximation (AMSA) is used to derive the closed-form expressions for the thermodynamic properties of an (n+m)-component mixture of sticky charged hard spheres, with m components representing polyions and n components representing counterions. The present version of the AMSA explicitly takes into account association effects due to the high asymmetry in charge and size of the ions, assuming that counterions bind to only one polyion, while the polyions can bind to an arbitrary number of counterions. Within this formalism an extension of the Ebeling–Grigo choice for the association constant is proposed. The derived equations apply to an arbitrary number of components; however, the numerical results for thermodynamic properties presented here are obtained for a system containing one counterion and one macroion (1+1 component) species only. In our calculation the ions are pictured as charged spheres of different sizes (primitive model) embedded in a dielectric continuum. Asymmetries in charge of −10:+1, −10:+2, −20:+1, and −20:+2 and asymmetries in diameter of 2:0.4nm and 3:0.4nm are studied. Monte Carlo simulations are performed for the same model solution. By comparison with new and existing computer simulations it is demonstrated that the present version of the AMSA provides semiquantitative or better predictions for the excess internal energy and osmotic coefficient in the range of parameters where the regular hypernetted chain (HNC) and improved (associative) HNC do not yield convergent solutions. The AMSA liquid–gas phase diagram in the limit of complete association (infinitely strong sticky interaction) is calculated for models with different degrees of asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. N. Vorontsov-Veliaminov, A. M. El'yashevich, L. A. Morgenshtern, and V. P. Chasovskih, Teplofiz. Vys. Temp. 8:277 (1970) [High Temp. (USSR) 8:261 (1970)].

    Google Scholar 

  2. V. P. Chasovskih, P. N. Vorontsov-Veliaminov, and A. M. El'yashevich, Dokl. Acad. Nauk Tadzhikskoj SSR 16(10):23 (1973).

    Google Scholar 

  3. V. P. Chasovskih and P. N. Vorontsov-Veliaminov, Teplofiz. Vys. Temp. 14:199 (1976) [High Temp. (USSR) 14:174 (1976)].

    Google Scholar 

  4. G. Stell, K. S. Wu, and B. Larsen, Phys. Rev. Lett. 37:1369 (1976).

    Google Scholar 

  5. B. Larsen, G. Stell, and K. S. Wu, J. Chem. Phys. 67:530 (1977).

    Google Scholar 

  6. J. P. Valleau, J. Chem. Phys. 95:584 (1991).

    Google Scholar 

  7. A. Z. Panagiotopoulos, Fluid Phase Equilib. 76:97 (1992).

    Google Scholar 

  8. G. Orkoulas and A. Z. Panagiotopoulos, J. Chem. Phys. 101:1452 (1944).

    Google Scholar 

  9. J. L. Caillol, J. Chem. Phys. 100:2161 (1994).

    Google Scholar 

  10. G. Stell, J. Stat. Phys. 78:197 (1995).

    Google Scholar 

  11. M. E. Fisher and Y. Levin, Phys. Rev. Lett. 71:3826 (1993).

    Google Scholar 

  12. Y. Levin and M. E. Fisher, Physica A 225:164 (1996).

    Google Scholar 

  13. Y. Zhou, S. Yeh, and G. Stell, J. Chem. Phys. 102:5785 (1995).

    Google Scholar 

  14. B. Guillot and Y. Guissani, Molec. Phys. 87:37 (1996).

    Google Scholar 

  15. S. Yeh, Y. Zhou, and G. Stell, J. Phys. Chem. 100:1415 (1996).

    Google Scholar 

  16. Yu. V. Kalyuzhnyi, Molec. Phys. 94:735 (1998).

    Google Scholar 

  17. K. S. Schmitz, Macroions in Solution and Colloidal Suspension (VCH Publishers, New York, 1993).

    Google Scholar 

  18. V. Vlachy, Annu. Rev. Phys. Chem. 50:145 (1999).

    Google Scholar 

  19. D. Elkoubi, P. Turq, and J. P. Hansen, Chem. Phys. Lett. 52:493 (1977).

    Google Scholar 

  20. F. J. Rogers, J. Chem. Phys. 73:6272 (1980).

    Google Scholar 

  21. G. N. Patey, J. Chem. Phys. 72:5763 (1980).

    Google Scholar 

  22. J. P. Hansen and J. B. Hayter, Molec. Phys. 46:651 (1982).

    Google Scholar 

  23. P. Linse and B. Jonsson, J. Chem. Phys. 78:3167 (1983).

    Google Scholar 

  24. E. Sheu, C. F. Wu, S. H. Chen, and L. Blum, Phys. Rev. A 32:3807 (1985).

    Google Scholar 

  25. L. Belloni, Chem. Phys. 99:43 (1985); J. Chem. Phys. 85:519 (1986).

    Google Scholar 

  26. D. Bratko, H. L. Friedman, and E. C. Zhong, J. Chem. Phys. 85:377 (1986).

    Google Scholar 

  27. D. Bratko, H. L. Friedman, S. H. Chen, and L. Blum, Phys. Rev. A 34:2215 (1986).

    Google Scholar 

  28. G. Senatore and L. Blum, J. Chem. Phys. 89:2676 (1985).

    Google Scholar 

  29. M. Fushiki, J. Chem. Phys. 89:7445 (1988).

    Google Scholar 

  30. V. Vlachy, T. Ichiye, and A. D. J. Haymet, J. Am. Chem. Soc. 113:1077 (1991).

    Google Scholar 

  31. C. Caccamo and G. Malescio, J. Chem. Phys. 90:1091 (1989).

    Google Scholar 

  32. C. Caccamo, J. Chem. Phys. 91:4902 (1989).

    Google Scholar 

  33. P. Linse, J. Chem. Phys. 93:1376 (1990).

    Google Scholar 

  34. G. Senatore and G. Pastore, Cond. Matt. Theories, Vol. 8, L. Blum and F. B. Malik, eds. (Plenum Press, New York, 1993), p. 615.

    Google Scholar 

  35. Yu. V. Kalyuzhnyi and V. Vlachy, Chem. Phys. Lett. 215:518 (1993).

    Google Scholar 

  36. V. Vlachy, J. Chem. Phys. 99:471 (1993).

    Google Scholar 

  37. D. Forciniti and C. K. Hall, J. Chem. Phys. 100:7553 (1994).

    Google Scholar 

  38. J. Wang and A. D. J. Haymet, J. Chem. Soc. Faraday Trans. 90:1245 (1994).

    Google Scholar 

  39. Yu. V. Kalyuzhnyi, V. Vlachy, M. F. Holovko, and G. Stell, J. Chem. Phys. 102:5770 (1995).

    Google Scholar 

  40. B. Hribar, H. Krienke, Yu. V. Kalyuzhnyi, and V. Vlachy, J. Molec. Liquids 73/74:277 (1997).

    Google Scholar 

  41. Yu. V. Kalyuzhnyi, L. Blum, M. F. Holovko, and I. A. Protsykevytch, Physica A 236:85 (1997).

    Google Scholar 

  42. L. Blum, Yu. V. Kalyuzhnyi, O. Bernard, and J. N. Herrera-Pacheco, J. Phys.: Condens. Matter 8:A143 (1996).

    Google Scholar 

  43. L. Blum, Molec. Phys. 30:1529 (1975); L. Blum and J. S. Hýye, J. Phys. Chem. 81:1311 (1977); R. Triolo, L. Blum, and M. A. Floriano, J. Chem. Phys. 67:5956 (1977).

    Google Scholar 

  44. L. Belloni, Phys. Rev. Lett. 99:2026 (1986); L. Belloni, J. Chem. Phys. 98:8080 (1993).

    Google Scholar 

  45. Yu. V. Kalyuzhnyi, M. F. Holovko, and A. D. J. Haymet, J. Chem. Phys. 95:9151 (1991).

    Google Scholar 

  46. Yu. V. Kalyuzhnyi and G. Stell, Molec. Phys. 78:1247 (1993).

    Google Scholar 

  47. C. W. Outhwaite, Statistical Mechanics (The Chemical Society, London, 1975), p. 188.

    Google Scholar 

  48. G. Feat and S. Levine, J. Chem. Soc. Faraday Trans. 2 73:1345 (1977).

    Google Scholar 

  49. C. W. Outhwaite, Chem. Phys. Lett. 53:599 (1978).

    Google Scholar 

  50. J. Rescic, V. Vlachy, L. B. Bhuiyan, and C. W. Outhwaite, Molec. Phys. 95:233 (1998).

    Google Scholar 

  51. J. Rescic, V. Vlachy, C. W. Outhwaite, L. B. Bhuiyan, and A. K. Mukherjee, J. Chem. Phys. 111:5514 (1999).

    Google Scholar 

  52. M. F. Holovko and Yu. V. Kalyuzhnyi, Molec. Phys. 73:1145 (1991).

    Google Scholar 

  53. Yu. V. Kalyuzhnyi and M. F. Holovko, Molec. Phys. 80:1165 (1993).

    Google Scholar 

  54. O. Bernard and L. Blum, J. Chem. Phys. 104:4746 (1996).

    Google Scholar 

  55. L. Blum and O. Bernard, J. Stat. Phys. 79:569 (1995).

    Google Scholar 

  56. J. N. Herrera and L. Blum, J. Chem. Phys. 94:5077 (1991).

    Google Scholar 

  57. M. S. Wertheim, J. Stat. Phys. 35:19 (1984); 35:35 (1984).

    Google Scholar 

  58. N. Bjerrum, Kgl. Dan. Vidensk. Selsk. Mat.-fys. Medd. 7:9 (1926).

    Google Scholar 

  59. W. Ebeling and M. Grigo, Annalen der Physik 37:21 (1980); W. Ebeling and M. Grigo, J. Sol. Chem. 11:151 (1982).

    Google Scholar 

  60. J.-P. Simonin, O. Bernard, and L. Blum, J. Phys. Chem. 103:699 (1999).

    Google Scholar 

  61. H. Krinke, J. Barthel, M. F. Holovko, I. A. Protsykevich, and Yu. V. Kalyuzhnyi, J. Molec. Liquids (2000), in press.

  62. M. F. Golovko and H. Krienke, Molec. Phys. 68:967 (1989).

    Google Scholar 

  63. L. Blum, J. Stat. Phys. 19:201 (1978).

    Google Scholar 

  64. B. Hribar and V. Vlachy, J. Phys. Chem. 101:3457 (1997).

    Google Scholar 

  65. B. Hribar and V. Vlachy, Biophys. J. (1999), in press.

  66. M. J. Gillan, Molec. Phys. 49:421 (1983).

    Google Scholar 

  67. J. C. Shelley and G. N. Patey, J. Chem. Phys. 103:8299 (1995).

    Google Scholar 

  68. J.-M. Caillol and J.-J. Weiss, J. Chem. Phys. 102:7610 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyuzhnyi, Y.V., Holovko, M.F. & Vlachy, V. Highly Asymmetric Electrolytes in the Associative Mean-Spherical Approximation. Journal of Statistical Physics 100, 243–265 (2000). https://doi.org/10.1023/A:1018699914319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018699914319

Navigation