Skip to main content
Log in

Natural human anti-Galα(1,3)Gal antibodies react with human mucin peptides

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

We have recently demonstrated that both antibodies to Galα(1,3)Gal, and the Galα(1,3)Gal binding lectin (IB4), bind a synthetic peptide (DAHWESWL), there being a similar recognition of carbohydrate and peptide structures. We now report that the anti-Galα(1,3)Gal antibodies and IB4 lectin also react with peptides encoded by mucin genes (MUC 1, 3, 4)-sequences known to be rich in serine, threonine and proline. This activity was demonstrated (1) by the ability of mucin derived peptides to block the reaction of anti-Galα(1,3)Gal antibodies and IB4 lectin with a Galα(1,3)Gal+ pig endothelial cell line; the reactions were specific and did not occur with a random peptide containing the same sequences or with other mucin peptides; (2) by the fact that anti-mucin1 antibodies could react with the Galα(1,3)Gal expressed after transfection of COS cells (Galα(1,3)Gal-, Muc1-) with cDNA encoding the pig α,3galactosyltransferase; and (3) that the IB4 lectin and anti-Galα(1,3)Gal antibodies could react with mucin 1 found on the surface of human breast cancer cells. Thus natural occurring anti-Galα(1,3)Gal antibodies found in all human serum can react with self (Muc1) peptides expressed in large amounts on the surface of tumour cells but not on normal cells. The findings are of interest and serve to explain the previously reported findings that human cells can, at times, express Galα(1,3)Gal; such expression is an artefact, the reaction is due to the phenomenon described herein, i.e. that anti-Galα(1,3)Gal antibodies react with mucin peptides. Abbreviations: HPLC, high performance liquid phase chromatography; HRP, horse radish peroxidase; mAb, monoclonal antibody; NHS, normal human serum; PBS, phosphate buffered saline; VNTR, variable number of tandem repeats

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stacker SA, Thompson CH, Sacks NPM, Tjandra J, Lowe M, Bishop J, McKenzie IFC (1988) Cancer Res 48: 7060–6.

    Google Scholar 

  2. McKenzie I, Xing P-X (1990) Cancer Cells 2: 75–8.

    Google Scholar 

  3. Arklie J, Taylor-Papadimitriou J, Bodmer WF, Eyan M, Millis R (1981) Int J Cancer 28: 23–9.

    Google Scholar 

  4. Stacker SA, Thompson C, Riglar C, McKenzie IFC (1985) J Natl Cancer Inst 75: 801–11.

    Google Scholar 

  5. Burcell J, Gendler S, Taylor-Papadimitriou J, Girling A, Lewis A, Millis R, Lampost D (1987) Cancer Res 47: 5476–82.

    Google Scholar 

  6. Gendler JD, Spicer AP (1995) Annu Rev Physiol 265: 607–34.

    Google Scholar 

  7. Gendler SJ, Burchell JM, Duhig T, Lamport D, White R, Parker M, Taylor-Papadimitriou J (1987) Proc Natl Acad Sci USA 84: 6060–4.

    Google Scholar 

  8. Wreschner DH, Hareuveni M, Tsarfaty I, Smorodinsky N, Horev J, Zaretsky J, Kotkes P, Weiss M, Lathe R, Dion A, Keydar I (1990) Eur J Biochem 189: 463–74.

    Google Scholar 

  9. Xing P-X, McKenzie IFC (1191) In Breast Epithelial Antigens: Molecular Biology to Clinical Applications, Ceriani RL, Ed. pp. 45–54. New York and London: Plenum Press

    Google Scholar 

  10. Xing P-X, Prenzoska J, McKenzie IFC (1992) Mol Immunol 29: 641–50.

    Google Scholar 

  11. Barnd DL, Lan MS, Metzgar RS, Finn OJ (1989) Proc Natl Acad Sci USA 86: 7159–63.

    Google Scholar 

  12. Galili U, Shohet SB, Kobrin E, Stults CLM, Macher BA (1988) J Biol Chem 263: 17755–62.

    Google Scholar 

  13. Sandrin MS, Vaughan HA, McKenzie IFC (1994) Transplant Rev 8: 134–49.

    Google Scholar 

  14. Sandrin MS, McKenzie IFC (1994) Immunol Rev 141: 169–90.

    Google Scholar 

  15. Joziasse DH, Shaper JH, Jabs EW, Shaper NC (1991) J Biol Chem 266: 6991–8.

    Google Scholar 

  16. Larsen RD, Rivera-Marrero CA, Ernst LK, Cummings RD, Lowe JB (1990) J Biol Chem 265: 7005–61.

    Google Scholar 

  17. Galili U, Macher BA, Buehler J, Shohet SB (1985) J Exp Med 162: 573–82.

    Google Scholar 

  18. Galili U (1989) Lancet 2: 358–61.

    Google Scholar 

  19. Castronova V, Colin C, Parent B, Foidart J, Lambotte R, Mahieu P (1989) J Natl Cancer Inst 81: 212–16.

    Google Scholar 

  20. Petryniak J, Varani J, Ervin PR, Goldstein IJ (1991) Cancer Lett 60: 59–65.

    Google Scholar 

  21. Vaughan HA, Oldenburg KR, Gallop MA, Atkin JD, McKenzie IFC, Sandrin MS (1996) Xenotransplantation 3: 18–23.

    Google Scholar 

  22. Xing P-X, Tjandra JJ, Stacker SA, Teh JG, Thompson CH, McLaughlin PJ, McKenzie IFC (1989) Immunol Cell Biol 67: 183–5.

    Google Scholar 

  23. Hayes CE, Goldstein IJ (1974) J Biol Chem 249: 1904–14.

    Google Scholar 

  24. McKenzie IFC, Xing P-X, Vaughan HA, Prenzoska J, Dabkowski PL, Sandrin MS (1994) Transplant Immunol 2: 81–6.

    Google Scholar 

  25. Sandrin MS, Vaughan HA, Dabkowski PL, Mckenzie IFC (1993) Proc Natl Acad Sci USA 90: 11391–5.

    Google Scholar 

  26. Merrifield RB (1963) J Am Chem Soc 85: 2149–54.

    Google Scholar 

  27. Sandrin MS, Gumley TP, Henning MM, Vaughan HA, Gonez LJ, Trapani JA, McKenzie IFC (1992) J Immunol 149: 1636–41.

    Google Scholar 

  28. Jerome KR, Bu D, Finn OJ (1992) Cancer Res 52: 5985–90.

    Google Scholar 

  29. Sandrin MS, Dabkowski PL, Henning MM, Mouhtouris E, McKenzie IFC (1994) Xenotransplantation 1: 81–8.

    Google Scholar 

  30. Vaughan HA, Henning MM, Purcell DFJ, McKenzie IFC, Sandrin MS (1991) Immunogenetics 33: 113–17.

    Google Scholar 

  31. Apostolopoulos V, Xing P-X, Trapani JA, McKenzie IFC (1993) Br J Cancer 67: 713–20.

    Google Scholar 

  32. Oldenburg KR, Loganathan D, Goldstein IJ, Schultz PG, Gallop MA (1992) Proc Natl Acad Sci USA 89: 5393–7.

    Google Scholar 

  33. Scott JK, Loganathan D, Easley RB, Gong X, Goldstein IJ, (1992) Proc Natl Acad Sci USA 89: 5398–402.

    Google Scholar 

  34. Hoess R, Brinkman U, Handel T, Pastan I (1993) Gene 128: 43–9.

    Google Scholar 

  35. Shikhman AR, Cunningham MW (1994) J Immunol 152: 4375–87.

    Google Scholar 

  36. Shikhman AR, Greenspan NS, Cunningham MW (1994) J Immunol 153: 5593–606.

    Google Scholar 

  37. Westerlink MA, Giardina PC, Apicella MA, Kieber-Emmons T (1995) Proc Natl Acad Sci USA 92: 4021–5.

    Google Scholar 

  38. Price MR, Hudecz F, O'Sullivan C, Baldwin RW, Edwards PM, Tendler SJB (1990) Mol Immunol 27: 795–802.

    Google Scholar 

  39. Xing P-X, Prenzoska J, Quelch K, McKenzie IFC (1992) Cancer Res 52: 2310–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandrin, M.S., Vaughan, H.A., Xing, PX. et al. Natural human anti-Galα(1,3)Gal antibodies react with human mucin peptides. Glycoconj J 14, 97–105 (1997). https://doi.org/10.1023/A:1018521217276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018521217276

Navigation