Skip to main content
Log in

A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Loosening of implants in bone is commonly associated with a development of fibrous interface tissues, due to interface gaps and a lack of mechanical stability. It has been postulated that the differentiation of these tissues to fibrocartilage or bone is governed by mechanical stimuli. The objective of our research is to unravel these relationships to the extent that the question whether an implant will loosen can be answered from initial conditions determined by implant and interface morphology, and functional loads. In this project we studied the hypothesis that distortional strain and interstitial fluid flow are the mechanical stimuli governing tissue differentiation. For that purpose, a biomechanical regulatory model was developed and used in association with a finite element code to simulate animal experiments with implants moving in bone. The similarities between the implant incorporation process found in the experiment and its simulation with the computer model demonstrate that our hypothesis is viable from a regulatory point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. GOODMAN and P. ASPENBERG, Biomaterials 13 (1992) 944.

    Google Scholar 

  2. M. HILDING, X. YUAN and L. RYD, Acta Orthop. Scand. 66 (1995) 21.

    Google Scholar 

  3. F. PAUWELS, “Biomechanics of the locomotor apparatus” (Springer-Verlag, Berlin, 1980) pp. 375407.

    Google Scholar 

  4. N. J. GIORI, L. RYD and D. R. CARTER, J. Arthroplasty 10 (1995) 514.

    Google Scholar 

  5. D. R. CARTER, P. R. BLENMAN and G. S. BEAUPRE, J. Orthop. Res. 6 (1988) 736.

    Google Scholar 

  6. S. M. PERREN and R. A. RAHN, Canad. J. Surg. 20 (1980) 228.

    Google Scholar 

  7. H. WEINANS, R. HUISKES and H. J. GROOTENBOER, J. Biomech. 26 (1993) 1271.

    Google Scholar 

  8. K. SØBALLE, K. H. B.-RASMUSSEN, E. S. HANSEN and C. BÜNGER, J. Bone Jt. Surg. 75B (1993) 270.

    Google Scholar 

  9. P. J. PRENDERGAST and R. HUISKES, Mech. Compos. Mater. 32 (1996) 209.

    Google Scholar 

  10. P. J. PRENDERGAST, R. HUISKES and K. SØBALLE, J. Biomech. 30 (1997) 539.

    Google Scholar 

  11. A. S. JAYES and R. M. McNEIL ALEXANDER, J. Zool. Lond. 185 (1978) 298.

    Google Scholar 

  12. V. C. MOW, S. C. KUEI, W. M. LAI and C. ARMSTRONG, J. Biomech. Engng 102 (1980) 73.

    Google Scholar 

  13. J. A. OCHOA and B. M. HILLBERRY, Transact. 38th ORS 17 (1992) 162.

    Google Scholar 

  14. C. NEIDLINGER-WILKE, L. STALLA, L. CLEAS, R. A. BRAND, I. HOELLEN, S. RUBENACKER, M. ARAND and L. KINZL, J. Biomech. 28 (1995) 1411.

    Google Scholar 

  15. J. KLEIN NULEND, A. VAN DER PLAS, C. M. CEMEINS, N. E. AJUBI, J. A. FRANGOS, P. J. NIJWEIDE and E. H. BURGER, FASEB 9 (1995) 441.

    Google Scholar 

  16. R. HUISKES, H. WEINANS, H. J. GROOTENBOER, M. DALSTRA, B. FUDALA and T. J. SLOOFF, J. Biomech. 20 (1987) 1135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HUISKES, R., DRIEL, W.D.V., PRENDERGAST, P.J. et al. A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. Journal of Materials Science: Materials in Medicine 8, 785–788 (1997). https://doi.org/10.1023/A:1018520914512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018520914512

Keywords

Navigation