Skip to main content
Log in

Controlled nucleation and crystallization in Fe2O3–CaO–SiO2 glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the first time controlled nucleation and crystallization were studied for 40Fe2O3–20CaO–40SiO2 (wt%) glass which is useful as thermoseeds for hyperthermia of cancer. To investigate the crystallization mechanism of Fe2O3–CaO–SiO2 glass, the Avrami parameter and the activation energy for crystallization were measured by isothermal and non-isothermal processes using classical and differential thermal analysis techniques. Magnetite was the main crystal phase and the maximum nucleation and crystal growth temperatures were 700 and 1000°C, respectively. The value of kinetic parameters such as the Avrami constant, the activation energy, and the frequency factor, determined using isothermal and non-isothermal processes showed excellent agreement. The slopes of the Kissinger, and Matusita and Sakka plots were almost parallel to each other, and, consequently, crystal growth is believed to occur on a fixed number of nuclei, the m values being considered to be the same as the n values. Using m=1.5 and n=1.5, it was found that diffusion-controlled crystal growth with a constant number of nuclei occurred and these result are in excellent agreement with those determined by the classical technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. F. James, Phys. Chem. Glasses 15 (1974) 95.

    Google Scholar 

  2. E. D. Zanotto and A. Galhardi, J. Non-Cryst. Solids 104 (1988) 73.

    Google Scholar 

  3. A. Morotta, in “Nucleation and Crystallization in Glasses” edited by J. H. Summons, D. R. Uhlmann and G. H. Beall (American Ceramic Society, Columbus, OH, 1982) p. 146.

    Google Scholar 

  4. C. S. Ray and D. E. Day, J. Am. Ceram. Soc. 73 (1990) 439.

    Google Scholar 

  5. A. Morotta, J. Mater. Sci. 16 (1981) 341.

    Google Scholar 

  6. A. A. Luderer, Rad. Res. 94 (1983) 190.

    Google Scholar 

  7. Y. Ebisawa, J. Ceram. Soc. Jpn 99 (1991) 7.

    Google Scholar 

  8. Y. K. Lee and S. Y. Choi, J. Am. Ceram. Soc. 79 (1996) 992.

    Google Scholar 

  9. M. B. Volf, “Chemical Approach to Glass” (Elsevier, Amsterdam, 1984) p. 349.

    Google Scholar 

  10. P. F. James, Phys. Chem. Glasses 15 (1972) 95.

    Google Scholar 

  11. M. Avrami, J. Chem. Phys. 7 (1939) 1103.

    Google Scholar 

  12. T. Ozawa, Polymer 12 (1971) 150.

    Google Scholar 

  13. H. E. Kissinger, Anal. Chem. 29 (1957) 1702.

    Google Scholar 

  14. K. Matusita, J. Mater. Sci. 10 (1975) 961.

    Google Scholar 

  15. K. Matusita and S. Sakka, Phys. Chem. Glasses 20 (1979) 81.

    Google Scholar 

  16. Idem, J. Non-Cryst. Solids 38-39 (1980) 741.

    Google Scholar 

  17. K. Matusita, J. Mater. Sci 19 (1984) 291.

    Google Scholar 

  18. K. Matusita and Komatsu, Thermochim. Acta 88 (1985) 283.

    Google Scholar 

  19. D. W. Henderson, J. Non-Cryst. Solids 30 (1979) 301.

    Google Scholar 

  20. H. Yinnon, ibid. 54 (1983) 253.

    Google Scholar 

  21. M. Matsuura and K. Suzuki, J. Mater. Sci. 14 (1979) 395.

    Google Scholar 

  22. C. S. Ray, J. Am. Ceram. Soc. 74 (1991) 60.

    Google Scholar 

  23. X. J. Xu, ibid, 74 (1991) 909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LEE, YK., CHOI, SY. Controlled nucleation and crystallization in Fe2O3–CaO–SiO2 glass. Journal of Materials Science 32, 431–436 (1997). https://doi.org/10.1023/A:1018517819830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018517819830

Keywords

Navigation