Skip to main content
Log in

Review: Processing of metals by equal-channel angular pressing

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Equal-channel angular pressing (ECAP) is a processing method in which a metal is subjected to an intense plastic straining through simple shear without any corresponding change in the cross-sectional dimensions of the sample. This procedure may be used to introduce an ultrafine grain size into polycrystalline materials. The principles of the ECAP process are examined with reference to the distortions introduced into a sample as it passes through an ECAP die and especially the effect of rotating the sample between consecutive presses. Examples are presented showing the microstructure introduced by ECAP and the consequent superplastic ductilities that may be attained at very rapid strain rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. O. Hall, Proc. Roy. Soc. B 64 (1951) 747.

    Google Scholar 

  2. N. J. Petch, J. Iron Steel Inst. 174 (1953) 25.

    Google Scholar 

  3. A. Ball and M. M. Hutchison, Metal Sci. J. 3 (1969) 1.

    Google Scholar 

  4. T. G. Langdon, Acta Metall. Mater. 42 (1994) 2437.

    Google Scholar 

  5. T. C. Lowe and R. Z. Valiev, JOM 52(4) (2000) 27.

    Google Scholar 

  6. T. C. Lowe and R. Z. Valiev (ed.), “Investigations and Applications of Severe Plastic Deformation” (Kluwer, Dordrecht, The Netherlands, 2000).

    Google Scholar 

  7. K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, Mater. Sci. Eng. A 281 (2000) 82.

    Google Scholar 

  8. V. M. Segal, ibid. 197 (1995) 157.

    Google Scholar 

  9. S. R. Agnew, U. F. Kocks, K. T. Hartwig and J. R. Weertman, in “Modelling of Structure and Mechanics of Materials from Microscale to Product,” edited by T. Leffers, T. Lorentzen, O. B. Pedersen, B. F. Sørensen and G. Winther (Risø National Laboratory, Roskilde, Denmark, 1998), p. 201.

    Google Scholar 

  10. V. M. Segal, V. I. Reznikov, A. E. Drobyshevskiy and V. I. Kopylov, Russian Metall. 1 (1981) 99.

    Google Scholar 

  11. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon, Scripta Mater. 35 (1996) 143.

    Google Scholar 

  12. Y. Wu and I. Baker, ibid. 37 (1997) 437.

    Google Scholar 

  13. A. Shan, I.-G. Moon, H.-S. Ko and J.-W. Park, ibid. 41 (1999) 353.

    Google Scholar 

  14. D. P. Delo and S. L. Semiatin, Metall. Mater. Trans. A 30A (1999) 1391.

    Google Scholar 

  15. R. E. Goforth, K. T. Hartwig and L. R. Cornwell, in “Investigations and Applications of Severe Plastic Deformation,” edited by T. C. Lowe and R. Z. Valiev (Kluwer, Dordrecht, The Netherlands, 2000), p. 3.

    Google Scholar 

  16. T. Aida, K. Matsuki, Z. Horita and T. G. Langdon, Scripta Mater. 44 (2001) 575.

    Google Scholar 

  17. D. N. Lee, ibid. 43 (2000) 115.

    Google Scholar 

  18. H. S. Kim, M. H. Seo and S. I. Hong, Mater. Sci. Eng. A 291 (2000) 86.

    Google Scholar 

  19. K. Nakashima, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater. 46 (1998) 1589.

    Google Scholar 

  20. P. B. Prangnell, C. Harris and S. M. Roberts, Scripta Mater. 37 (1997) 983.

    Google Scholar 

  21. S. L. Semiatin, D. P. Delo and E. B. Shell, Acta Mater. 48 (2000) 1841.

    Google Scholar 

  22. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, Metall. Mater. Trans. A 29A (1998) 2245.

    Google Scholar 

  23. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Mater. Sci. Eng. A 257 (1998) 328.

    Google Scholar 

  24. S. Lee and T. G. Langdon, Mater. Res. Soc. Symp. Proc. 601 (2000) 359.

    Google Scholar 

  25. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater. 45 (1997) 4733.

    Google Scholar 

  26. S. Ferrasse, V. M. Segal, K. T. Hartwig and R. E. Goforth, Metall. Mater. Trans. A 28A (1997) 1047.

    Google Scholar 

  27. Idem., J. Mater. Res. 12 (1997) 1253.

    Google Scholar 

  28. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon, Acta Mater. 46 (1998) 3317.

    Google Scholar 

  29. Idem., Metall. Mater. Trans. A 29A (1998) 2503.

    Google Scholar 

  30. M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, Mater. Sci. Eng. A 241 (1998) 122.

    Google Scholar 

  31. S. Komura, Z. Horita, M. Nemoto and T. G. Langdon, J. Mater. Res. 14 (1999) 4044.

    Google Scholar 

  32. H. Hasegawa, S. Komura, A. Utsunomiya, Z. Horita, M. Furukawa, M. Nemoto and T. G. Langdon, Mater. Sci. Eng. A 265 (1999) 188.

    Google Scholar 

  33. Z. Horita, T. Fujinami, M. Nemoto and T. G. Langdon, Metall. Mater. Trans. A 31A (2000) 691.

    Google Scholar 

  34. A. Yamashita, D. Yamaguchi, Z. Horita and T. G. Langdon, Mater. Sci. Eng. A 287 (2000) 100.

    Google Scholar 

  35. A. Gholinia, P. B. Prangnell and M. V. Markushev, Acta Mater. 48 (2000) 1115.

    Google Scholar 

  36. C. P. Chang, P. L. Sun and P. W. Kao, ibid. 48 (2000) 3377.

    Google Scholar 

  37. T. G. Langdon, M. Furukawa, M. Nemoto and Z. Horita, JOM 52(4) (2000) 30.

    Google Scholar 

  38. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, Metall. Mater. Trans. A 30A (1999) 1989.

    Google Scholar 

  39. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto and T. G. Langdon, ibid. 29A (1998) 2011.

    Google Scholar 

  40. Y. T. Zhu and T. C. Lowe, Mater. Sci. Eng. A 291 (2000) 46.

    Google Scholar 

  41. R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon and T. G. Langdon, Scripta Mater. 37 (1997) 1945.

    Google Scholar 

  42. P. B. Berbon, N. K. Tsenev, R. Z. Valiev, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, Metall. Mater. Trans. A 29A (1998) 2237.

    Google Scholar 

  43. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev and T. G. Langdon, Phil. Mag. Lett. 78 (1998) 313.

    Google Scholar 

  44. S. Komura, P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, Scripta Mater. 38 (1998) 1851.

    Google Scholar 

  45. S. Lee, P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev and T. G. Langdon, Mater. Sci. Eng. A 272 (1999) 63.

    Google Scholar 

  46. Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes and T. G. Langdon, Acta Mater. 48 (2000) 3633.

    Google Scholar 

  47. S. Komura, Z. Horita, M. Furukawa, M. Nemoto and T. G. Langdon, J. Mater. Res. 15 (2000) 2571.

    Google Scholar 

  48. Idem., Metall Mater. Trans. A 32A (2001) 707.

    Google Scholar 

  49. O. B. Makova, V. K. Portnoy, I. I. Novikov, N. I. Kolobnev and L. B. Khokhlatova, in “Aluminium-Lithium,” Vol. 2, edited by M. Peters and P.-J. Winkler (DGM Informationsgesellschaft, Oberusel, Germany, 1992), p. 1133.

    Google Scholar 

  50. M. Furukawa, P. B. Berbon, Z. Horita, M. Nemoto, N. K. Tsenev, R. Z. Valiev and T. G. Langdon, Metall. Mater. Trans. A 29A (1998) 169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furukawa, M., Horita, Z., Nemoto, M. et al. Review: Processing of metals by equal-channel angular pressing. Journal of Materials Science 36, 2835–2843 (2001). https://doi.org/10.1023/A:1017932417043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017932417043

Keywords

Navigation